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Abstract

The algebraic structure of the solution space of all types of anisotropic laminates is determined. The full space is
shown to be the direct sum of a number of orthogonal eigenspaces, one for each simple or multiple eigenvalue, whose
dimension equals the multiplicity. There are eight different types of eigenvalues, which combine to yield eleven distinct
types of laminates with peculiar representations of the general solution. All such representations are explicitly obtained,
along with the pseudo-metrics based on the binary product of the eigenvectors. This leads to the projection operators in
the solution space, spectral sums and intrinsic tensors analogous to the Stroh—Barnett-Lothe tensors in 2-D elasticity.
The present theoretical results are obtained by adopting a mixed formulation involving the deflection function and
Airy’s stress function, and by using new laminate elasticity matrices different from the conventional stiffness matrices A,
B and D. The new formulation also discloses an isomorphism relating each anisotropic laminate to an image laminate,
such that every equilibrium solution of the former directly yields an image solution of the latter by interchanging the
kinematical and kinetic variables and the in-plane and out-of-plane variables. This implies, in particular, that the
classical bending theory of homogeneous plates and symmetric laminates is not a distinct subject, despite its historical
development and pedagogical recognition, but is mathematically identical to the plane stress problem of anisotropic
elasticity.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Laminated plates, generally distinguished by strong anisotropy and coupling of the in-plane and out-of-
plane responses, occupy a central place in advanced composite structures. Most textbooks on the mechanics
of composite materials devote a significant portion of space to the theory and analysis of laminated plates.
There is a voluminous literature on the subject, including extensive analytical and numerical solutions of
various types of laminates subjected to a variety of loads and boundary conditions. However, theoretical
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studies on the mathematical properties and structure of the solutions of anisotropic laminates are
scarce, when compared to the similar studies in two closely related areas: homogeneous isotropic plates and
two-dimensional anisotropic elasticity. While the theory of anisotropic elasticity has received considerable
attention since the pioneering work of Lekhnitskii (1963) and Stroh (1958), culminating in the recent
publication of a major reference work by Ting (1996), no comparable development at the theoretical level
has appeared on the subject of anisotropic laminates. More than half a century after its publication,
Lekhnitskii’s book (1968, first Russian edition 1944) remains the standard reference in the field.

Lekhnitskii obtained the general solutions of anisotropic laminates for the case when the material
eigenvalues are all distinct. Coupling between in-plane and out-of-plane deformation was not considered.
This results in a general solution containing two arbitrary analytic functions of two distinct complex
variables and their complex conjugates. Many important problems of anisotropic plates, including elliptical
plates and infinite plates with elliptical holes or elliptic inclusions, as well as rectangular plates and tri-
angular plates, have been solved exactly or approximately using the complex variable representation and
Lekhnitskii’s method.

In the closely related problem of 2-D anisotropic elasticity, Lekhnitskii (1963) obtained the general
solution of the stress potentials in terms of the anisotropic elastic compliances. In contrast, the formalism of
Eshelby et al. (1953) and Stroh (1958, 1962) was based on the anisotropic elastic moduli and used the
displacement functions as the primary unknown variables. Both formalisms were developed under the
restrictive assumption that the eigenvalues are all distinct. In their study of coupled anisotropic plates, Lu
(1994) and Lu and Mahrenholtz (1994) adopted the ERSS (Eshelby-Reed-Shockley—Stroh) formalism for
the in-plane variables, and combined it with the out-of-plane deformation through bending-stretching
coupling. The primary unknown variables are the three components of the mid-plane displacement, u, v and
w, and the constitutive relations are represented by the three stiffness matrices A, B and D of the classical
laminated plate theory. Their work extended Lekhnitskii’s analysis of symmetric laminates to coupled
laminates. However, it was also restricted by the assumption of distinct eigenvalues. The various degenerate
cases with repeated eigenvalues were not investigated. The equations characterizing the eigenvalue problem
were given in terms of the matrices A, B and D, but the eigenvectors and eigensolutions were not obtained
in explicit forms, due to the inherent complexity of the ERSS formalism.

The main objective of the present paper is twofold. First, Lekhnitskii’s complex variable method for two-
dimensional elasticity and the bending of uncoupled anisotropic plates will be extended to general aniso-
tropic laminates with coupling between in-plane and out-of-plane deformation. This step is of considerable
importance because laminate configurations that are asymmetric with respect to the mid-plane, and hence
exhibiting the coupling effect, are found in newer applications of advanced composites, if not by design then
occasionally due to degradation and damage such as delamination. We assume that both the in-plane and
out-of-plane deformations are small so that, besides constitutive coupling, there is no coupling effect
associated with geometrical nonlinearity. While the problem is basically identical to the one treated by Lu
and Mahrenholtz, the present formulation adopts the Lekhnitskii formalism rather than the ERSS for-
malism in so far as it regards the in-plane deformation. This leads to a reduced eigenvalue problem of a
lower dimension, and to simple, analytical expressions of the eigenvectors and eigensolutions that may be
given explicitly. The second objective of this paper is to fully develop the complex variable method to
include all degenerate cases, i.e., when the laminate has repeated eigenvalues and when the original
Lekhnitskii method does not provide the full set of eigenvectors. In such cases, higher-order eigenvectors
must be obtained to make up for the deficiency. The matter is far from merely academic because isotropic
and transversely isotropic plates are degenerate. With regard to both objectives, the result of the present
investigation is complete. No particular case is left unresolved.

In recent works on two-dimensional elasticity (Yin, 1997, 2000), it was shown that the formulation
in terms of the elastic compliance coefficients, as initiated by Lekhnitskii, has decisive advantages over
the displacement formulation using the anisotropic stiffness. In the first approach, the determination of
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eigensolutions is reduced to the eigenvalue problem of a 2 x 2 matrix M(u), which may be solved effort-
lessly to give simple analytical expressions of the eigenvectors. The ERSS formalism leads to a 3 x 3
characteristic matrix, and to lengthy analytical expressions even for the zeroth-order eigenvectors. Al-
though he made no reference to the Russian work, Stroh gave dual derivations of the eigenvalue problem,
one in terms of the anisotropic moduli and the other in terms of the elastic compliances, and commented on
the advantage of the latter method in providing explicit expressions of the eigenvectors for the stress po-
tentials. He even said to prefer to express the results in terms of such eigenvectors rather than the eigen-
vectors of displacements, and that the experimental data of anisotropic compliances were more readily
available. Hence the term ““Stroh formalism™, which has recently been widely used to characterize a for-
malism with a strong bias toward the use of anisotropic moduli and displacement eigenvectors, notwith-
standing the complexity of analysis and results, is historically less than accurate. It has been shown (Yin,
2000) that the algebraic complexity of the stiffness-based formulation becomes more acute in the various
degenerate cases, where the higher-order eigenvectors must be obtained through relations that involve all
lower-order eigenvectors that share the same eigenvalue.

For the present study of general anisotropic laminates, the best formulation is to use as the primary
unknowns the in-plane stress function F(x,y), i.e., Airy’s function, and the deflection function w(x, y). This
choice appears obvious in view of the wide use of F in two-dimensional elasticity, and of w in the classical
plate theory. Indeed, F and w are the preferred choice of the variables in von Karman’s theory of plates,
where the coupling between the in-plane and the out-of-plane deformation arises not from the constitutive
relation but from geometrical nonlinearity. However, just as the ERSS formalism departs from the general
use of F in 2-D elasticity, many existing works in classical laminate theory either use the three displacement
functions u, v and w as the primary unknowns, or use the purely kinetic variables including the stress and
moment resultants. This results in complicated equations, unavailability of general solutions except in
restricted cases, and an obscure analytical formulation in which the fascinating algebraic structure and
properties of the solution space remain largely unexplored and unrecognized.

If F and w and their second derivatives—the membrane forces and curvatures—are to be taken as the
primary unknown variables, then the constitutive relations must express the complementary variables, the
in-plane strains and the bending and twisting moments, in terms of the primary unknowns. The conven-
tional stiffness matrices A, B and D of anisotropic laminates (Christensen, 1991), which express the kinetic
variables of the moments and membrane forces in terms of the purely kinematical variables of the cur-
vatures and membrane strains, are ill-suited for the analytical task of determining the eigensolutions. They
will be replaced by new elasticity matrices A", B* and D" expressing the moments and the in-plane strains
in terms of the curvatures and the membrane forces. In this new formulation of anisotropic laminates, the
determination of the eigensolutions is again reduced to a trivial eigenvalue problem of a 2 x 2 charac-
teristic matrix M(u). Although the eigenvectors of the present problem have a higher dimension, many of
the analytical results and expressions turn out to be formally identical to those of the 2-D anisotropic
elasticity.

There are five distinct types of eigenvalues in 2-D anisotropic elasticity with the multiplicity varying from
one to three. Their various combinations result in a classification of all anisotropic materials into
five different types. For the general problem of coupled anisotropic laminates, the present analysis yields
eight types of eigenvalues with the multiplicity varying from one to four, and eleven types of laminates.
Each type of laminate has a distinct representation of the general solution. The types of eigenvalues depend
on the multiplicity, and on whether the eigenvalue is normal (M(u) # 0), abnormal (M(u) = 0), or super-
abnormal (M(p) = M'(n) = 0). If an eigenvalue possesses a smaller number of independent (zeroth-order)
eigenvectors than its multiplicity, then higher-order eigenvectors must be found to make up for the defi-
ciency in the representation of the general solution. These higher-order eigenvectors and the associated
higher-order eigensolutions are derived in Section 2 of the present paper. It is found, a posteriori, that they
can be obtained by differentiating appropriate analytical expressions of the zeroth-order eigenvectors and
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eigensolutions with respect to the parameter u, followed by evaluation at the multiple eigenvalue. The
presentation in Section 2 is very terse. A full exposition may be found in Yin (2003).

In Sections 3-5, the mathematical structure of the solution space of all eleven types of anisotropic
laminates is investigated. It is shown first that, for every laminate, the eight-dimensional solution space is
the direct sum of a number of orthogonal subspaces (to be called eigenspaces), one for each distinct
eigenvalue, whose dimension equals the multiplicity of the eigenvalue. Orthogonality is defined with respect
to the binary product of Eq. (26), which generally yields a complex number for a pair of eigenvectors sharing
the same eigenvalue. Although the binary product is not an inner product, it endows the solution space and
its orthogonal subspaces with a nonsingular pseudo-metric. This confirms the linear independence of the
eigenvectors and eigensolutions. For a laminate with unequal eigenvalues, the eigenspaces are one-
dimensional, and orthogonality of eigenvectors is as easily proved as in the corresponding case of 2-D
anisotropic elasticity. Proof of the orthogonality of eigenspaces is not trivial for degenerate, extra-degen-
erate and ultra-degenerate laminates. Furthermore, the inner structure of the eigenspace associated with a
multiple eigenvalue, as characterized by the pseudo-metric, is significantly different between a normal
eigenvalue and an abnormal eigenvalue. The pseudo-metrics of the eigenspaces associated with eight dif-
ferent types of eigenvalues are obtained in Section 4 and listed in Appendix A. They form the basis of the
discrete spectral analysis in Section 5, and of the representations of general solutions and intrinsic tensors
for all eleven types of laminates as given in Section 6.

When the new elasticity matrices A*, B* and D" are used instead of the conventional stiffness matrices A,
B and D, and when appropriate changes are made in the order and in certain algebraic signs of the
components of the moment and the curvature, the coupled differential equations governing the redefined
variables reveal full symmetry with regard to two groups of variables: one group consisting of —u, —v and
F, and the other group comprising the moment potentials and the deflection function w. In this symmetry
relationship, the kinematical variables of membrane strains change into the kinetic variables of bending and
twisting moments, and the membrane forces change into the curvature components. This isomorphism
associates each anisotropic laminate that has the elasticity matrices A*, B* and D* with an image laminate
having the corresponding elasticity matrices D*, —B*" and —A*, such that every equilibrium solution of
the original laminate is transformed into a corresponding equilibrium solution of the image laminate by the
dual interchange of the kinematical variables with the kinetic variables and the in-plane variables with the
out-of-plane variables. In particular, kinematical boundary conditions of the in-plane displacements are
mapped into kinetic boundary conditions of the moment potentials, and vice versa.

This isomorphism between the image laminates emerges clearly in the present formulation which uses the
new elasticity matrices A", B* and D". It is obscured in the conventional theory of laminates that uses the
stiffness matrices A, B and D. For a laminate with no bending/stretching coupling, the symmetry relation
implies that all in-plane elasticity solutions may be converted into the bending solutions of the image
laminate. From both theoretical and computational points of view, the plane-stress elasticity problem,
whether isotropic or anisotropic, is essentially identical to the bending problem of classical thin plates, and
the latter should never have been developed, and continue to be taught, as if it were a distinct subject. In
other words, the totality of bending solutions of anisotropic laminates with mid-plane symmetry is coex-
tensive with the totality of 2-D plane-stress anisotropic elasticity solutions. Hence the rich inventory of
isotropic and anisotropic plane-stress solutions, including those contained in the works of Muskhelishvili
(1963) and Lekhnitskii (1963), are easily converted to corresponding bending/twisting solutions of the
image laminates, but the two sets of solutions have boundary conditions of the complementary types.

The results and proofs in this paper are established in a general mathematical form using combinatorials
with variable indices, so that their validity depends neither on the dimensions of vectors and matrices nor
on the multiplicity of roots. Hence the present proofs and results (particularly Sections 3-5 on the ortho-
gonality of eigenspaces, pseudo-metrics and projection operators, which are inadequately treated in Yin
(2000)) may apply to 2-D anisotropic elasticity by merely changing the dimension of eigenvectors from



W.-L. Yin | International Journal of Solids and Structures 40 (2003) 1825-1852 1829

eight to six. They may also be applicable to other related problems of anisotropic media having a similar
mathematical structure, such as problems of surface waves and piezoelectric materials. The principal re-
quirement is that the primary unknown variables—curvatures and membrane forces in the present case—
are derivable as the components of the second gradients of scalar functions (w and F). This important
relation, however, remains unexploited in the ERSS formalism, which accounts for its unwieldiness.

2. Eigensolutions

In the conventional theory of anisotropic laminated plates, the constitutive relations are given in terms of
three symmetric, 3 x 3 stiffness matrices A, B and D (Christensen, 1991):

n = Ae + Bk, m = Be + Dk, (1)
where
T T T
€e={e,€6,2¢ ) ={unvu,+v.t, K={we,wy,, 2wyl (2a,b)
n = {NvavaNry}Tv m = {MHA/[)MMW}T, (203 d)

and u and v are the mid-plane tangential displacements and w is the deflection function. The equilibrium
equations imply that the stress and moment resultants be derivable from three potential functions F(x, y),
¥ (x,y) and ¥,(x,y):

Nx = Eyy7 Ny = EXX7 va = _Exy7 (3)
Mv = Y117)57 Mx - WZAyy 72Mxy = 'Pljy + lPZ,x~ (4)
Let
L= {W,yv _W,xaEyv _an lPh lP27 —Uu, _U}Tv (5)
¢ = {W,yyv W,xxv _W,xyaE}yaExxa _F:xy}T, (63)
0= {M,, M,, —2M,,, —€,, —€,, —2¢,,} . (6b)
Then Eq. (1) may be rewritten as
0=Co, (7)
where
._[D" B |_[A(D-BA'B)A ABA’'
c= [B*T —A*} = [ A-'BA A ] (82)
01 0
A=1|1 0 0 |. (8b)
0 0 -2

Notice that A" is the in-plane compliance matrix and the elements of B* have the dimension of thickness.
The following matrix functions are important to the present theory:
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L 0 0 0 0000 0000T100 0
0 -1 0 0 0000 00000 x 00
-1 0 0 0 0000 o000 1 00
PW=109 o 4 0 0000 EW=l0000001 0| (%a,b)
0 0 0 —-10000 000000 0 u
0 0 -1 0 0000 000000 u 1
20
1 00 0 00 1 0
4 01 0 00 0
Y(#)E 0.“ 0 0 1 0 07 P(:u)E g _'u2 ) (loavb)
0 00 —u 0 1 0 -1
0 I
—u 0
_| 1 o0 _ ' _ [I(w
sw=] g Ol w0=vecrw, sw=|10) (11a,b,¢)
0 1
M(u) = P(p)" C'P(n). (12a)

The components of the matrix M(p) are quadratic functions of p, i.e.,
My () = {12, =1, )} =12, — 1,1},
Mi() = Moy (1) = {=17, =1, 3B {—1, =1, 1}, (12b)
Mo () = {—, =1, i} (=A ) {—p>, —1,u}".
Consider first the zeroth-order eigensolutions, which have the following form
x=Sx+ )k, (13)

where & is a complex constant vector and f is an arbitrary analytic function involving a complex parameter
u. Substituting Eq. (13) into (5), and using w,, = w,, and F,, = F,,, one obtains

(—1/u){2}={2}=n- (14)

Then Egs. (6a,b) and (7) become

¢ =f'(x+ w)®(WE = f'(x+w)P(wm, 0= f"(x+ u)E(WE, (15a,b)

E(1)§ = C'P(u)n. (16)
Premultiplying Eq. (16) by the matrices Y and P" yields, respectively,

(04, LJE = {&5, 6 &7, &6} = Y(W)CP(m, (17)

M(un =0, (18)

where 04,4 and 1, denote four-dimensional zero matrix and identity matrix, respectively. Combination of
(14) and (17) yields an expression of the eight-dimensional vector & in terms of n:

&=J(wn, (19)
where the matrix function J(u) is defined by Eq. (11).
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Eq. (18) has a nontrivial solution if u is a root of the characteristic equation
6(u) = Det[M(u)] = 0. (20)

For each root of Eq. (20), Eq. (18) yields at least one nontrivial . Then Egs. (19) and (13) give a nontrivial
vector & and a solution . The roots of Eq. (20) are called eigenvalues, and & and 7 is, respectively, the
associated eigenvector and eigensolution.

According to (12), Eq. (20) is a polynomial equation in u of the eighth degree with real coefficients. Hence
its complex roots occur in conjugate pairs. It has been shown (Yin, 2003) that the equation cannot have real
roots if the elastic strain energy of the laminate is positive definite. If all four complex conjugate pairs of
eigenvalues are distinct, then each eigenvalue yields an eigenvector and an eigensolution. An appropriate
linear combination of the four complex conjugate pairs of eigensolutions gives the general solution with
real values for the various physical quantities.

If Eq. (20) has multiple roots, then the preceding procedure may yield fewer than eight independent
eigensolutions, and additional (higher-order) eigensolutions must be obtained to supplement the preceding
(zeroth-order) eigensolutions. The form of these higher-order eigensolutions depends on the type and
multiplicity of the eigenvalue. An eigenvalue u is called normal if M(p) of Eq. (12) is not the null matrix. It
is called abnormal if M(y) is the null matrix but M'(u) is not, and superabnormal if M(u) = M'(u) = 0. The
multiplicity may vary from one to four for a normal eigenvalue, and from two to four for an abnormal
eigenvalue. A superabnormal eigenvalue must be a quadruple root, because it is a root of all three scalar
equations M;;(1) = 0. Thus there are eight different types of eigenvalues, one of which is superabnormal,
three are abnormal, and all others normal.

Consider an eigenvalue u of multiplicity p (2<p<4). A Nth order eigensolution (N < p) has the fol-
lowing expression

™M= NSO x4 e (21)

0<j<N

where (N, j) = N!/{(N — j)j!}, fU denotes the jth derivative of an arbitrary analytic function f, and

g gl . &M are eight-dimensional complex constant vectors. These constant vectors may be expressed
in terms of two-dimensional vectors 0%, q"l, ..., q and the matrix J(yx) in the following manner

eV = J(wm” + (, DI (W™ + (7, 2)3" (" + (7, 3)3" (w7, (22)
where

; 01 00 0 0 0 0],
W — [7] ;

0 0 O
and it is understood that 0/ = 0 if j is a negative integer. 1%, q!'!,..., and 0 are determined by the
following system of equations
S G AMOGMPT =0 (p=0.1,....N). (23)
0<j<p

Here MY denotes the jth derivative of the matrix defined by Eq. (12).
The identity involving M(u) and its adjoint matrix W(u)

M(0)W(i) = 5(u)1 (24)
may be differentiated with respect to u repeatedly to yield additional identities
> N HIMIPD (W () = 5N (L. (25)

0<;<N
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Since 5<N)(,u) = 0 whenever 0 <N < p — 1, one has

> N IMY (W () =0 (0KN<p—1). (26)

0</<N

If y, is a normal eigenvalue, so that the 2 x 2 symmetric matrix W(g,) is of rank one, then W(y,) has at
least one nonvanishing diagonal element. For otherwise W;; = W, = 0 and then it would follow from
Det[W] = 0 that W, = 0, so that W(g,) would be the zero matrix. We define the column selector p based on
the position of the larger diagonal element of W(y,):

- {170}T if [Wi1(ro)| = W2 (o), 2
P {{O,l}T otherwise, (272)

W=p"W(ggp,....W" =p "W (1)p. (27b)

The definition of p ensures that, for a normal eigenvalue u,, n(1,) = W(u,)p is always a nontrivial vector
and it yields a zeroth-order eigenvector % = J (o)W (uy)p. For a multiple normal eigenvalue, the system of
equations (23) has the following solutions (N <p<1)

W =WO(wp (j=0,1,...,N), (28)

where each WY () is the adjoint matrix of MY (y). Substituting (28) into (22), one obtains the higher-order
eigenvectors £V, Then Eq. (21) gives the eigensolutions of the corresponding order containing an arbitrary
analytic function f(x + wy).

For an abnormal eigenvalue u, M(u) vanishes so that Eq. (18) is trivially satisfied by an arbitrary n. Two
zeroth-order eigensolutions are obtained by choosing i to be {1, 0}T and {0, 1}T successively. The corres-
ponding eigenvectors are the two columns of J(y,), and Eq. (21) gives two zeroth-order eigensolutions.

If p, is an abnormal eigenvalue of multiplicity three or four, then M(y,) = W(y,) =0 and d(y,) =
8" (1y) = 8" (1) = 0, but M'(y,) and W'(y,) are not zero matrices. The relation §”(u,) = 0 reduces to
2], (o) W (1) — 2W(11)* = 0. Hence W/, (1) and Wy, (u,) cannot both vanish; otherwise W' () would
be the zero matrix. We define, for an abnormal eigenvalue p,,

= { (L0 W > ) 290)
{0,1}" otherwise,

W=p"W)p=0, W =p"W(u)p,..., W' =p"W" (u)p. (29b)

Then n"' = W/(,)p is always a nontrivial vector, and it satisfies Eq. (23) for N = 1 in view of Eq. (26),
which for N = 1 reduces to M'W + MW’ = 0 since & vanishes for a repeated eigenvalue. The complete set
of solutions of Eq. (23) is given by (N<p—1)

W = WO (wp (1<j<N). 0

The higher-order eigenvectors and eigensolutions are obtained by substituting (30) into (22) and then into
0.

A superabnormal eigenvalue y, has the two zeroth-order eigenvectors given by the two columns of J(g).
In addition, it has two first-order eigenvectors given by the two columns of J' ().

For the eigensolutions of the various orders expressed by Egs. (21) and (22), the curvatures, mid-plane
strains and stress and moment resultants are given by

OM = NSO+ S (NI @EN 4 (v — @, (31a)

0<j<N-1
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oM = VIR £ N (N )V TEEN Y 4 (v — RN (31b)

0<,j<N-1

In the literature on anisotropic elasticity, the higher-order eigensolutions are often called generalized
eigenfunctions. The term “eigensolution” is preferred because the real parts of all eigensolutions are indeed
equilibrium solutions of the corresponding anisotropic laminated plate.

The zeroth-order eigenvector ﬁ[o], obtained from Egs. (18) and (19), is a polynomial function of u to be
evaluated at the specific eigenvalue. If one withholds the evaluation, treats u instead as a variable, and
differentiates Egs. (13), (19) and (15a,b) repeatedly with respect to u, followed by evaluation at the specific
eigenvalue, one obtains precisely the same equations as (21), (22) and (31a,b) except that all jth-order
quantities in the equations are replaced by the jth derivatives of the corresponding zeroth-order quantities
with respect to u. Therefore, the higher-order eigenvectors and eigensolutions can be obtained formally by
repeated differentiation of appropriate analytical expressions of the zeroth-order eigenvectors and eigen-
solutions, followed by evaluation at the specific eigenvalue. This derivative rule (Yin, 2000, 2003) will be
used frequently in the following analysis.

3. Orthogonal eigenspaces

The four complex conjugate pairs of eigenvalues will be arranged as a sequence p = {p, ty, i3, Ly,
[y, fio, i3, fs }» such that the first four elements have positive imaginary parts and, among these four, any
double or triple eigenvalue appears after all simple eigenvalues. A repeated eigenvalue appears in p as many
times as its multiplicity. The eigenvectors will be assembled as the columns of a matrix in a one-to-one
correspondence to the eigenvalues in p and, for those associated with a common multiple eigenvalue, ar-
ranged in the increasing order ;. This yields an 8 x 8 eigenmatrix Z., such that the last four columns of Z are
the complex conjugates of the first four, i.e.,

Z={2"7"}. (32)
For each anisotropic laminate, the eigenmatrix Z completely determines the general solution. It also de-
termines certain real-valued matrices (analogous to the Stroh-Barnett—Lothe tensors in 2-D anisotropic
elasticity) that characterize the intrinsic structure of the solution space.

The eight-dimensional solution space may be decomposed into a number of orthogonal subspaces, one
for each distinct simple or multiple eigenvalue. These subspaces will be called eigenspaces. Orthogonality is
defined with respect to the binary product, which may be introduced as follows for any two matrices U and
V of row dimension eight (their column dimensions need not be equal):

[U,V]=U"IV = [V,U]", where Il = s Iy | (33)
L4 044

The binary product of a matrix U with itself yields the matrix U'ITU which is always symmetric.
If U and V are submatrices of the eigenmatrix Z, each consisting of a number of eigenvectors, then, under
a rotation of the coordinates in the x—y plane, one has

X" X _ | cos@ sind
{J’*}_QZ{J’}’ where Q, = [—SinO cosO]' (34)
The eigenvectors and the submatrix Z* transform in the following manner
g* = QSga (Z+)* = Q8z+a (35)

and so do U and V, where
QS = <Q27Q2aQ27Q2> (36)
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denotes the block diagonal matrix formed by four identical submatrices Q,. It is easily verified that
M =1, QgIIQ=IL (37a,b)

Applying the binary product to two distinct eigenvectors &, and &,, to the matrices U and V, and to their
images after rotation, one obtains, by using Eq. (37b)

[[QVY; ‘f;] = [517 62]7 [U*7V*]} = [[U, V]' (38217 b)
Furthermore,
Q=[2"72"]=[Z"),(Z")]. (39)

Therefore, the binary products of eigenvectors, and of the submatrices of the eigenmatrix Z, are invariant

under a rotation of the coordinates. Hence the matrix € characterizes the intrinsic structure of the four-

dimensional space spanned by the eigenvectors of Z*, and will be referred to as a pseudo-metric of that

space. It possesses some properties of a metric, but it is complex-valued and certainly not positive definite.
For two eigensolutions y and y’, the binary product

"I’l ¥,

/

! !
L AT £t
Wy w

/ /
woow

[x ] = ‘

—u v
F. F,

—u -
’ F. F
x Ly

WV WY

is a sum of terms of the same physical dimension. In contrast, the usual scalar product yields a dimen-
sionally inconsistent sum.

Egs. (35), (38a,b) and (39) are the transformation rules for the values of the vector and matrix functions.
If they are to be applied to the matrix functions rather than to their values, then one has to keep in mind
that the matrices associated with the original coordinates are functions of u, whereas the starred matrices
are functions of u* = (ucos6 — sin0)/(cos 0 + psin ), because, under the coordinate transformation of
Eq. (34), the complex variable x 4+ uy transforms into cos 6 + p sin @ multiplied by the new complex variable

A key relationship between the matrix functions J(u) and M(u) may be verified by routine algebraic
manipulation:

(1= W[I (W), J(W)] = M(n) — M(f), (40)
where the arguments p and i may or may not be the same. Differentiation with respect to u gives
(1= (W), JW] + [I(w), I(@)] = M (). (41a)

Repeated differentiation yields, for 1 <s<N — 1,

& — DI, I} = (1 — WII (), IV (@] + NV = )[3 (), 3 ()]
— 3 (), 30V ()]
= 0. (41b)

For = 1, Egs. (41a) and repeated use of (41b) give
[I(w), I(w)] =M (),
[T (), 39 ()] = {s!(NV = )/ (N + DIMY D (1) (0<s <N <3). (42a,b)

Egs. (22) and (42b) imply the following important expression for the binary product of any two eigen-
vectors of arbitrary orders (0 < p, ¢ < 3) sharing the same eigenvalue
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[ (w), €T = > Y (p.k)(g, DK/ (k + 1+ 1)} (=) TV gla

0<k<p 0<I<gq
=plgt > {l/(p+g+1=s)s@Prr DTN (s mM b, (43)
q+1 <s<p+q+1 s—q<m<s

While the preceding expressions are always valid, repeated differentiation of Eq. (40) yields an equation
which is valid only if 1 and f are not equal:

SAARY D™ 3 @) i
P G Ol MO G, (44)

If €7 (1) and £ (j1) are eigenvectors of orders p and ¢ respectively (0 < p, ¢ < 3), associated with two distinct
eigenvalues p and fi, then Egs. (22) and (23) yield

[E¥ (1), &% ()]
> (29 (g oM (@) IV (), IO () Il (@)

0<s<p 0<r<yg

= > 2 DTN ()@ s m)m + Ol =+ )T )t MO (e ()

0<s<p 0<1<yg 0<m<s

+ D 2 0T Y i) g O m) o +)! (e — ) ) MO (o ()

0<s<p 0<1<q 0o<m<t

= > > ) Mg @ m) i+ m (—p+ ) @) S (0= mok = m)ME (P ()

0<1<qg 0<m<p m<k<p

T2 2 DT ) m)l e ) !

0<s<p 0<m<yq
x> (g —mk —mM* (@ () = 0. (45)
m<k<gq

Notice that the two innermost sums in the last expression vanish in view of Eq. (23). Eq. (45) shows the
orthogonality of the eigenvectors associated with distinct eigenvalues. In the terminology of vector space,
the eight-dimensional solution space is the direct sum of a number of eigenspaces that are mutually ortho-
gonal in the sense of the binary product. Each eigenspace is spanned by the eigenvectors of various orders
associated with a single distinct eigenvalue, whose multiplicity equals the dimension of that eigenspace.

Orthogonality of the zeroth-order eigenvectors follows easily from our Eqgs. (18) and (40). It was shown
by Stroh (1958) using a different proof

The orthogonality relation (45) implies that
(25, Z)=[Z",2"] =0o. (46)
Eqgs. (39) and (46) yield

[2.21 - [(z". Z) 2 T 1= gl (@)

Consequently,

(Det[Z])* = Det[Q]Det[€Y]. (48)
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The orthogonality relation (45) also implies that the symmetric matrix € is in the block diagonal form,
where each block w; is associated with a distinct eigenvalue . @ is the pseudo-metric of the eigenspace of
.- If w, has the multiplicity p, we let its p independent eigenvectors be arranged in ascending orders and
combined into an § x p matrix X;. Then

W, = [[Xk,Xk]}, (49)

Q= <(!)k), (50)
and Eq. (48) becomes

(Det(z])* = [ IDetfen] (51)

In the next section, the pseudo-metrics m; will be explicitly obtained for the eigenspaces of all eight types
of normal, abnormal and superabnormal eigenvalues, and their inverse matrices will be found analytically.
Hence the matrices Q and Z are also nonsingular, and they have unique inverses Q' and Z~'. Notice that
the invertibility of Z implies that the eight eigenvectors and the associated eigensolutions are indeed in-
dependent. This has been previously assumed but has never been proved for the various degenerate cases.

4. Pseudo-metrics of the various types of eigenspaces

It was pointed out in the previous section that there are eight distinct types of eigenvalues depending on
multiplicity and degeneracy or nondegeneracy. To each type of eigenvalue is associated a type of eigen-
space, spanned by a set of independent eigenvectors of various orders, whose dimension equals the multi-
plicity of the eigenvalue.

The eigenvectors that span the p-dimensional eigenspace of a multiple eigenvalue u are generally not
orthogonal. For two eigenvectors sharing a common normal eigenvalue, substitution of solution (28) into
Eq. (43) yields the important expression of the binary product

[&" & = (o)™ V(i = IG = DY+ = 1)!
={i-D)G=DG+j— DM I+ (i+j—1,1)8" I
{G=DIG-DYE+j—-1H J
+(i+j— 1,200 4 (i 4 j—1,3)" Iy, (52)

where negative-order derivatives are taken to be zero.

Eq. (52) yields the pseudo-metrics oy, @2, ®py3 and @y of the eigenspaces associated with a normal
eigenvalue of multiplicity from one to four. The inverses of these matrices may also be obtained. The results
are given in Egs. (A.1)-(A.4) of Appendix A. These equations are formally identical to the corresponding
results in plane anisotropy given by Egs. (4.13), (4.14), (5.13a) and (5.13b) in Yin (2000), even though the
functions ¢ and /, in the latter work are polynomials of degrees six and two, respectively, while  and W in
the present analysis are polynomials of higher degrees.

We next consider the eigenspace associated with an abnormal eigenvalue p, for which M(y), and hence
also W(u), are zero matrices while M'(u) and W'(u) are not. There are two independent zeroth-order
eigenvectors given by the two columns of J(u). For N = 2, Eq. (26) reduces to

M (1)W' (1) = &" (WL (53)

If p is of multiplicity two, then 6" (1) # 0 and therefore Det[M'(u)] cannot vanish. According to Eq. (42a),
the two-dimensional eigenspace has the pseudo-metric

oy = [J(w), J(w)] =M'(n). (54a)
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Eq. (53) gives the inverse matrix
oy = (2/0")W' (1) (54b)

If u, is a triple abnormal eigenvalue, then three eigenvectors may be chosen as follows to ensure their
linear independence:

g[‘”zJ(uo)H (l)]f,, gl = (IW)p=IWp, & =(IW)p= (W +2IW)p, (55a,b,c¢)

where p is the column selector defined by Eq. (28a). For an abnormal quadruple eigenvalue one has, in
addition,

am _ (JW)///ﬁ _ (JW/// +3IW + 3J,/W/)f). (55(1)

Using Egs. (55a—) and (53) with 6"(u,) =0, one obtains the pseudo-metric @3 of the eigenspace
associated with a triple abnormal eigenvalue. (43 and its inverse matrix are given in Eq. (A.7).

Once again, Egs. (54a,b), (55a—) and Eq. (A.7) are formally identical to the corresponding results in
plane anisotropic elasticity (Yin, 2000), even though the matrices and eigenvectors in the present problem
have higher dimensions. However, the results for a triple abnormal eigenvalue, as given by Egs. (4.18),
(4.19) and (4.20a,b) in Yin (2000), contain errors. The errors result from missing a factor 2 for the
term containing J' and K’ in Egs. (4.18) and (4.19). The two equations should be replaced by the present
Eq. (55¢). In addition, Eqgs. (4.20a,b) in that paper should be replaced by present Egs. (A.7a,b), where W is
to be changed into /,. However, the matrices L, H and S, as given by Eq. (4.21) of the paper, are correct
and formally in agreement with the present results for laminated plates with a triple abnormal
eigenvalue.

If p is an abnormal quadruple eigenvalue, then one obtains the pseudo-metric = o4 from Egs.
(55a-d) and é(p) = &'(u) = 8" (u) = 6" (u) = 0. The result and the inverse matrix are given in Eq. (A.8) of
Appendix A.

For a superabnormal eigenvalue 1, both M(y,) and M'(y,) are null matrices. The governing equation
(23) imposes no restriction on §” and n!l. Four eigenvectors are obtained by using the columns of the
matrices J(g,) and J'(y,). This yields the pseudo-metric

(1/2)M" (1)

! ! 02x2
Ofs4] = [{J’J }7 {J7J H] = |:(1/2)M//('u0) (1/6)M///('u0) , (563.)
whose inverse is
o = (12/8") {_‘:’V/ 3 3’2"2} (56b)

Notice that the matrix product of (56a) and (56b) yields the identity matrix provided that
6M//wl/ _ 5////1’ Ml//w// _ M// W/// — 0

The first equality is implied by M = M' = W = W’ = 0 and Eq. (25) with N = 4. The second equality easily
follows from the following expressions for a superabnormal g,

M(p) = (n— 1)’ (1 — B)°C, W(p) = (u— py)* (1 — )’ C, (57a,b)

where

_4| D} B , 4| =A%, —B3
N A T |
o B3, —45, 1ol -By D3 ( )
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5. Projection operators and related intrinsic tensors

It was shown in the preceding two sections that, for each distinct eigenvalue u, of multiplicity p
(1 <p<4), the p-dimensional eigenspace has a nonsingular pseudo-metric o; = [Xy, X;] referred to the
eigenvectors in X;. Consider the 8 x 8 symmetric matrix

X,o;'X] = F; +iG,, (58)
where F; and G, are real, symmetric matrices. Postmultiplying by IIX;, and using Eq. (49), one obtains
X; = (F; + iG)IIX,. (59)

Therefore, the linear transformation (F; + iG;)II maps every vector in the eigenspace of y, into itself. On
the other hand, if & is an eigenvector associated with a different eigenvalue, then it is orthogonal to all
columns of X;, and Eq. (58) yields (F; + iG;)II&" = 0. Therefore, (F; + iG;)IL is the projection operator into
the eigenspace of y,, i.e., any eight-dimensional vector v may be decomposed as v = (F; + iG;)Ilv + v/,
where the first part belongs to the eigenspace of y,, and v’ is orthogonal to that eigenspace. For the con-
jugate eigenvalue fi,, Eqs. (49) and (58) are replaced by their complex conjugates, and one finds that the
projection operator is given by (F; — iG;)IL. This yields the decomposition of the identity transformation
into orthogonal projections:

Iy = (Fi +iGy) II+Z (F, — iG)II = (ZFk> 11, (60)

k

or, equivalently,
23 F =11,
k

where the summation extends over all eigenvalues with Im[u] > 0.
A similar argument, applied to the operators , (F; 4+ iG,)II and p, (F, —iG,)II, yields the following
equations instead of the last two:

TIIXk = ,Uka, TIIX]( = [:tkik, (61)
T=) wF+iG) + Y i (F —iGy). (62)
k k

Obviously, T is a real, symmetric matrix. Eq. (61) shows that the real matrix TII has its eigenvalues and
eigenvectors coinciding with the laminate eigenvalues and eigenvectors. Let (i) denote the diagonal matrix
of the eight eigenvalues arranged in the same order as the associated eigenvectors in Z. Then, substitution
of Eq. (58) and its complex conjugate into Eq. (62) yields

—1

TH =Z{u)(Q ', Q YZ'Il = Z(WZ . (63)

When one projection is followed by another, the effect is the null transformation except when the two
projections are identical. Hence (F, + iG;)II(F; — iG;) = 0 and, for k& # j,

(Fr +1G)II(F; +1G;) =0, (F, —iG)II(F; +iG;) =0
Separating into real and imaginary parts, one obtains
F.AIF, + GIIG,; = G/ IIF, — F 1IG, = 0,

64
FAIF; = FIIG; = GIIF; = GIIG, = 0 for k # j. ()
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When a projection is repeated, the effect is the same as applying the projection only once. Hence
F.I0F;, — GIIG, = F;, G/IIF, + F1IG; = G;.
It follows that
FI0F;, = —GIIG, = (1/2)F;, GIIF; = FIIG; = (1/2)G;. (65a,b)

Summing Eq. (58) over all eigenvalues with positive imaginary parts, and then do the same for all ei-
genvalues with negative imaginary parts, one obtains

(1/2)(F+iG) = 27Q"! ZFk +1ZGk, (66)

as well as the complex conjugate of (66). Hence,

F=2)"F,=II, G=2) G, (67a,b)
k k

where the summations also extend over all eigenvalues with Im[u] > 0. Eq. (66) and its complex conjugate
imply
(1/2)X+iGINZ = 7%, (1/2)(0+ iGII)Z =0, (68a,b)

+

(1/2)1—iGINZ' =Z", (1/2)(1—iGIZ" =0. (68c,d)

Hence (1/2)(I+iGII) and (1/2)(I —iGII) are, respectively, the projection operators from the solution
space to the subspace spanned by Z" and to its conjugate subspace. These relations also yield
+

GUZ' = —izZ", GNZ =iZ", (69a, b)

, the matrix GII has —i and +i as quadruple eigenvalues and the corresponding eigenvectors are,
respectlvely, the four columns of Z* and Z

GIIZ = Z{—ily,ily). (69c¢)
Notice also that Eq. (62) and (64a,b) yield the following and their complex conjugate equalities

Eq. (65a) gives F; = —2GIIG;. Substitution into Eq. (60) yields —4 >, G,IIG, = II. Using the ortho-
gonality relations of Eq. (64) for k& # j, one obtains

GIIGII = —I;. (70)
We define the 4 x 4 submatrices L, S, H of G, and the submatrices L;, S, and H; of G;:

G:[ =) S}_zzc,k_zz{sk HTJ (1)

Each eigenspace X, contributes the term Gy to Eq. (71), and the conjugate space X, contributes the same.
This accounts for the factor 2 in the last two expressions of (71). Symmetry of G, implies that L;, H;, L and
H are symmetric, while S; and S are generally not symmetric. Eq. (70) implies that

G ' = —IIGII,
HL-SS=LH-S'ST =1, (72)

LS = —(LS)", SH=—(SH)". (73)



1840 W.-L. Yin | International Journal of Solids and Structures 40 (2003) 1825-1852

Notice that Q is composed of diagonal blocks ;, and Z* is formed by joining the corresponding
submatrices X;. By summing Eq. (58) over £, using Eq. (67), and doing the same for the complex conjugate
of (58), one obtains

@' 0 hz' =2 F. =11 (74)
k

2@ -0 2" =2 G, =iG. (75)
k

When the last equation is postmultiplied by —ill, it yields the following expression which allows L, H and S
to be calculated directly from all eigenvectors and the reciprocal base vectors without first obtaining Q:

Gl = —iZ(Q ', —Q YZ™NZZ ' = Z(—il,,iL)Z . (76)
This remarkable simple expression also follows directly from Eq. (69c). Notice that Egs. (74) and (75) may
be combined to yield Eq. (66) and its complex conjugate.

Under the coordinate transformation of Eq. (34), Q is unchanged according to Eq. (39), while Z" and its
complex conjugate transform according to Eq. (35). Hence the left-hand side of Eq. (75), and therefore also
the matrix G, has to be premultiplied by Qg and postmultiplied by Qg to obtain the image matrices after the
rotation of coordinates. Consequently, the real matrices G, L, H and S conform to the tensorial trans-
formation rule

G =Q;GQg, L =Q,LQ;, H =QHQ;, S =0Q,SQ;,, (77)
where Q4 = (Q,, Q>).

The Stroh—Barnett-Lothe tensors in 2-D anisotropic elasticity satisfy equations identical in form to (72)
and (73), and other equations obtained by substituting the first equation of (71) into (74)—(77), except that
these tensors have the dimension three. Now the same identities have been established for all anisotropic
laminates, for which L, H and S are 4 x 4 real matrices.

Let 1, be a nonsingular, complex linear transformation in the eigenspace of y,. Then it maps the column
vectors of X into the column vectors that form another matrix X; = X, ;. Consider

(D;: = [XZ,XZ] = ‘EkT[Xk,Xk}Tk = ‘EkT(x)k’L'k7
; has the inverse matrix which satisfy
X;o; 'X; = (X {r o (1) HEO X)) = Xeo, "Xy = Fi +iGy. (78)

That is, F; + iG; and the projection operator (F, + iG)II are invariant under an affine transformation of
the base vectors of the eigenspace from the set X, to another set X].

Consider, similarly, a nonsingular linear transformation, t : Z" — (Z")" = Z"1, in the four-dimensional
space spanned by the vectors of Z*, and the conjugate transformation 7: Z" — (Z")" = Z*z. Eq. (77)
yields

| PR L (P ST —L

Z{ 0 iIJ(Z) _{H s}’ (79)
where Z* = {(Z*)",(Z")"}. Hence L, H and S are invariant under an arbitrary affine transformation of the
base vectors that preserves the complex conjugate relation. In other words, these matrices can be calculated
from Eq. (79) using any set of four linearly independent eigenvectors and their complex conjugates. The
results are not different. (On the other hand, different choices of base vectors yield different pseudo-metrics,
and the simple forms given in Appendix A are obtained only if the higher-order eigenvectors are related to
the lower-order ones according to the derivative rule.) There is neither an advantage nor a need to nor-
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malize the eigenvectors. Normalization aims to find a set of eigenvectors whose scalar or binary product
results in the identity matrix. This is generally impossible when the laminate is degenerate, extra-degenerate,
or ultra-degenerate. Certain lower-order eigenvectors & associated with a triple or quadruple eigenvalue are
found to satisfy [&,&] = 0 For example, Eq. (A.4a) shows that the two lowest-order eigenvectors of a
quadruple normal eigenvalue yield Q;; = Q,, = 0. Such eigenvectors cannot be normalized. Even for ei-
genvectors with [&, &] # 0, normalization generally results in complicated analytical forms of expression,
which make the implementation of the derivative rule unduly cumbersome. The present remarks concerning
normalization of eigenvectors apply also to the case of two-dimensional elasticity. Although normalization
has not found a role in the Lekhnitskii formalism, it has often been adopted in the ERSS formalism of the
nondegenerate cases with no apparent benefit.

Since the binary product is complex-valued, it does not define a metric in the vector space of solutions.
Hence it cannot endow the latter with a Euclidean geometrical structure. Orthogonality and projections are
valid concepts associated with the binary product in a complex vector space, but normalization and unit
vectors require a length measure which is not provided for all vectors in an eigenspace associated with a
multiple eigenvalue. Not only is normalization an alien concept, it is also not needed since the physical
solutions and physical entities such as L, H and S, given by Egs. (71) and (75) or (79), are invariant under
any affine transformation of the base vectors.

For the eigenspace associated with a normal eigenvalue, the eigenvectors may indeed be normalized in
a special way (but not in the sense of requiring various eigenvectors to have “unit magnitudes”), so
that the resulting pseudo-metric ®; depends only on the derivatives of 6 and not on W as defined in Eq.
(27b). Instead of using the eigenvectors &Y/ = (d//dw/) (JW)p, one may use &Y = (d&//dw)(JW//W)p.
Then, instead of Eq. (52), one has the following simple expression for the components of the pseudo-
metric:

oy = &) = G — DG — DY+ - 1) (80)

This pseudo-metric depends only on the various derivatives of 6 of order greater than p — 1 (since the
lower-order derivatives vanish). For an abnormal eigenvalue, it does not seem feasible to normalize the
eigenvectors so that the resulting pseudo-metric depends only on the derivatives of 9.

The pseudo-metric (Q, Q) of the eight-dimensional solution space has the inverse matrix (Q ', Q'). The
latter is the pseudo-metric of the dual space spanned by the reciprocal base vectors. The reciprocal base
vectors are the columns of the 8 x 8 matrix Y = (Z~')" (henceforth dissociated from the previous definition
of Y given by Eq. (10a)). One has

Y =Y'Z=YZ"=ZY" = L. (81)

From every relationship valid for the original base vectors, a corresponding relationship may be easily
derived for the dual base vectors. Some useful relations may be paired as follows

Z'MZ = (Q,Q), Y'Y= ' Q") (82)
Y=1ZQ "' Q") Z=1Y(Q Q) (83)
ZQ' QN2 =11, Y(Q QY'=1I, (84)
Q7' —QNYZT =iG, Y(Q,-Q)Y' =ilIGII, (85)
Z{d, -1)Z ' =iGH, Y(I,-L)Y ' =illG, (86)

THZ = Z{n), T 'IY = Y(1/p). (87)
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Eqgs. (85) and (86) are important for determining the real invariant matrix G and its 4 x 4 submatrices L, S
and H. Eq. (87) characterizes the eigenvectors and the reciprocal base vectors as the eigenvectors of the
matrices T IT and T~' II, respectively.

In the literature on 2-D anisotropic elasticity, the matrix corresponding to Z" is often split into an upper
square matrix B and a lower square matrix A. Adopting this notation for the present theory of anisotropic
laminates, we write

7= [}z g]. (88)

Egs. (39) and (46) become, respectively
Q=A"B+B'A, A™B+B'A =0, (89a, b)
while Egs. (74) and (75) yield
[2Re[BQlBT] 2Re[BQlAT]] _ [OM I }
2Re[AQ 'B"] 2Re[AQ 'AT] L 04y
[2Im[BQ‘1BT] ZIm[BQ‘lAT]] _ [—L ST]
2Im[AQ 'B"] 2Im[AQ 'AT] S HJ
Hence,
L=2BQ 'B", H=-2AQ'A"T, S=—-i2AQ 'B"-1). (90)
Furthermore, Eq. (69a) yields
(ST +i)B=LA, (S+il)A = —HB. (91a,b)

Let b and a denote the four-vectors formed by the first and the last four elements of a zeroth-order
eigenvector &. Then one may obtain from Eq. (17) the following expressions of a and b in terms of each
other:

w0 0 0
0 -1 0 0
-1 0 0 0
a=Y(uC b,
0 0 u O
0 0 o0 -1
L0 0 -1 0]
10 0 07
00 -1 0 0 0 0 g 0 0
L0 -1 00 0 o0 )t |* too| 922.b)
00 0 0 0 -I 0010
00 0 0 -1 0 00 0 u
0 0 u 1]

For a higher-order eigenvector &7 (j > 1), the corresponding relations between b and all are determined
by the derivative rule, i.e., by differentiating Eq. (92a,b) j-times with respect to u. Notice that these relations
depend on g, and the form of the relations depends on the order j, whereas Egs. (91a,b) and their complex
conjugate relations have the same form for all eigenvectors in Z* or AR
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Eqs. (92a,b) and the derived relations for the higher-order eigenvectors &7 imply that the matrices B
and A uniquely determine each other. Let A = ®B. Substitution into Eq. (89a) yields B'(® + ®")B =
Q. Since Q is nonsingular, so must be B, and the invertibility of A then follows because A uniquely de-
termines B. Finally, Eq. (90) implies that L, H, and S + il are all nonsingular. Egs. (91a,b) may be rewritten
as

A=—(S—il)L'B, B=(S"—i)H'A. (93)

The identities (89b), (90)—(91) and (93), are valid for all anisotropic laminates, irrespective of degeneracy.

6. General solutions and intrinsic tensors of the eleven types of laminates

According to Eq. (67b), the intrinsic matrix G and its submatrices L, H and S are, respectively, the
sums of the corresponding matrices Gy, L;, H; and S; of the various eigenspaces. The latter can be obtained
for all eight types of normal, abnormal and superabnormal eigenvalues according to Eq. (58). The results
are found and shown in this section. We will frequently use the following identity, which is easily
verified

Wpp"W = WW — 5(1 — pp"). (94)
Hence, for any scalar 0,
0IWpp " WJIT = oW IWJI" — 50(JJT — Jpp™JT).

Differentiating the last equation N times with respect to u and evaluating the result at an eigenvalue of
multiplicity p, one obtains, for N < p,

(d" /dp™)(0IWpp"WIT) = (dV /du™) (OW IWIT), (95a)
because § =& = --- =5V =0, and
(d”/d ) (0IWpp"WIT) = (d7 /dp?) (OWIWIT) — 6P 0(JIT — JppTIT). (95b)
Consider first the eigenspaces associated with normal eigenvalues of multiplicity 1 < p < 4. As mentioned
in the last section, if one chooses the eigenvectors to be (Jw//W)")p, N =0,1,...,p — 1, then one obtains

Eq. (80) instead of (52). Hence the expressions (A.1)-(A.4) for the pseudo-metrics and their inverses are
simplified, and they depend only on J and its nonvanishing derivatives, not on W and its derivatives.
Observing that (o, '), = 0 whenever » +s > p+ 1, Egs. (58), (80) and (95a,b) yield

FetiGo= >0 > (o), OW/VI)" pp"(WaT /i)™

I<r<p 1<s<1+p—r

= D@, DD (= L= AW/ ppT (W)

I<r<p I<s<I4p—r
= 3 (0, IWpp WIT/) 0 = 37 (1), (IWIT)E, (96)
I<r<p 1<s<p

Using the new expressions of the inverses of the pseudo-metrics which do not depend on W, one obtains
from Eq. (96) the matrix F + iG for normal eigenvalues of multiplicity from one to four. The results are
given as Egs. (B.1)-(B.4) in Appendix B.
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For an abnormal double eigenvalue, Eq. (54b) yields
(F+1G) = (2/3")IW' I (97)

For an abnormal eigenvalue of multiplicity 3 or 4, one stays with the eigenvectors as given by Egs.
(55a—d). Using W =0 and W =0, and substituting Eqs. (A.7b) and (A.8b) into (96), one obtains
(F +1G),; and (F +iG),,. They are given as Eqgs. (B.6) and (B.7) of Appendix B.

For a superabnormal eigenvalue, Eq. (56b) yields

(F + iG)[SA] _ (4/5////)(_JW///JT T 3J/W//JT + 3JW//J/T)
= (4/8")(IWIT)" + (12/5)(1/8") (IWIT)". (98)

The final expressions of Egs. (97), (B.6), (B.7), (98) for abnormal and superabnormal eigenvalues are found
to be identical to those for a normal eigenvalue of the same multiplicity, i.e., (F +iG)y,, (F +iG)y; and

(F +iG)yq reduce to (F+iG) ), (F+iG),y and (F +iG),,, respectively, when JWJ" vanishes for an
abnormal eigenvalue, and (F +iG),, reduces to (F+iG)g, when (JWJ')" also vanishes for a super-
abnormal eigenvalue. These relations are also found a posteriori, that is, without a deductive proof.

As shown in Sections 3 and 4, the solution space of every anisotropic laminate is decomposable into
orthogonal eigenspaces associated with simple or multiple eigenvalues which belong to one of the eight
distinct types. Combinations of the various types of eigenvalues and the corresponding eigenspaces yield
eleven mutually exclusive types of anisotropic laminates, each having a distinct analytical expression of the
general solution and a distinct form of the pseudo-metric Q = [Z*,Z"].

The ecleven types of laminates are designated by notations starting with ND, D, ED and UD
(nondegenerate, degenerate, extra-degenerate and ultra-degenerate) and followed by a sequence of
symbols, one for each distinct eigenvalue of the laminate, denoting the multiplicity and, if not normal,
abnormality or superabnormality. In the preceding analysis, only the eigensolutions associated with
eigenvalues that have positive imaginary parts were explicitly described. These eigensolutions must be
combined with the conjugate eigensolutions associated with the conjugate eigenvalues, in such a way
that the respective coefficient functions f; and g, are related by gi(x + i) = fi(x + wy). Then the
combined solutions always yield real values of the components of y, ¢ and 0 in Egs. (5) and (6a,b).
Each type of laminate has four complex conjugate pairs of eigensolutions with the orders varying from
zero to three. Each eigensolution, regardless of the order, contains one independent arbitrary analytic
function.

For all eleven types of laminates, the matrix Z*, the general solution vector 7, the pseudo-metric
Q and the intrinsic tensor (1/2)iG are listed in Appendix C. These representations of the general
solutions are fundamental to the analysis and solution of anisotropic laminate problems. Homo-
genous isotropic plates belong to the class of laminates that have superabnormal eigenvalues +i. Such
laminates are extra-degenerate (i.e., belong to the class [ED-4A] in the following notation). For these
laminates, the present general solution reduces to Goursat’s representation of biharmonic func-
tions. Laminates with isotropic in-plane responses and anisotropic bending and twisting responses are
usually called ‘“quasi-isotropic.” Such laminates generally have abnormal double eigenvalues +i, and
two distinct complex conjugate pairs of simple eigenvalues. These laminates are nondegenerate, and
they belong to the class [NDI-1-2A]. Clearly, the general solution of anisotropic laminates, which
manifests coupling between in-plane extension/shearing and out-of-plane bending/twisting, is far richer
in content and variety than the lower dimension problem of 2-D anisotropic elasticity. The systematic
and powerful analytical tools that have been developed for the plane elasticity problems may be
modified and applied to anisotropic laminates, to produce a body of solutions no less copious and
significant.
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7. Isomorphisms and image laminates

In view of the similarity between the fourth-order differential equation governing the stress function of
plane anisotropic elasticity and the corresponding equation governing the deflection function of anisotropic
laminates, Lekhnitskii (1968, p. 283) observed that the bending problem of symmetric anisotropic laminates
is closely related to the plane-stress problem of anisotropic elasticity. However, the exact nature of the
relationship remains to be clarified. In this section, the relationship is examined in the broader context of
laminates with generally nonvanishing coupling matrix B*. It is shown that there is an isomorphism which
associates every anisotropic laminate with an image laminate having closely related elasticity matrices, and
which maps every equilibrium solution of the original laminate into a complementary solution of the image
laminate. This transformation interchanges the bending variables with the in-plane variables. It also re-
verses the roles of the kinematical and kinetic variables. That is, the out-of-plane kinematical variables of
the original solution corresponding to the in-plane kinetic variables of the image solution, and vice versa.
Therefore, the boundary conditions of the original laminate and of the image laminate must be comple-
mentary, and cannot be identical.

We first recall that the subspace of solutions defined by the four eigenvectors in Z* are identical in
structure to the conjugate subspace defined by the elements of Z'. Real-valued physical solutions are
always obtained by combining mutually conjugate solutions of the two subspaces in a symmetric way.
Besides the automorphism connecting the two subspaces associated with Z*t and Z+, there is another one-
to-one correspondence between the equilibrium solutions of an anisotropic laminate with the elasticity
matrices A", B*, D*, and the equilibrium solutions of another laminate with the elasticity matrices D* /A2,
—(B*)T and A2A* (where # is a characteristic thickness parameter and we will henceforth take # = 1). In this
correspondence relation, the roles of VF and Vw are interchanged, as are the roles between the dis-
placements u, v and the moment potentials ¥, and ¥,. As a result, kinematical, kinetic and mixed boundary
conditions also change into complementary conditions.

The formal similarity of the first three and last three elements of ¢ and 0

T
(I) = {W,}yv Woxxs = Wiy, F:}yaExxa _Exy} y
0= {lpl,xa 'PZ,ya 'Pl,y + qum —Uy, _U,yv _(u,y + U,x)}Ta

suggests the consideration of the following transformation

g[/] - <Y4’ 7Y4>§ma XM - <Y47 7Y4>Xm7 (993, b)

o7 Yol 0V s Y0l (99¢, d)
. D* B . A BT

C = |:B*T _A*:| - _Yéc YG = |:_B* _D* :|7 (996)

W= Yo, M(p) — —Y,MYs, (991, g)

E() = —Y6E()(Ys, —=Ya), @(1) — Ye@(u)(Ya, —Ya), P(n) = YeP(1)Yo, (99h,1,j)

where

_ O 1 _ 02><2 12 _ 03><3 13
Yzz{l 0]’ Y4:[Iz OZXJ YG:[L 03XJ
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satisfy
LY, = Iz, Yy = 147 Y65 = 165 <Y4, _Y4><Y47 —Y4> =I.

It is easily verified that Eqgs. (7), (21)—(23) and (31a,b) remain satisfied by the transformed quantities.
Furthermore, since Det[—Y, M Y,] = —Det[M], the eigenvalues are unchanged under the transformation
of Eq. (99). Consider a laminate with the elasticity matrices A*, B* and D", and an image laminate whose
corresponding elasticity matrices are numerically equal to D*, —B*T and A*, respectively (discrepancies in
physical dimensions may be taken care of by introducing appropriate dimensional multiplicative factors).
Then the two laminates have the same eigenvalues, and their eigenvectors are related by Eq. (99a). For
every eigensolution of the original laminate, there is an eigensolution of the image laminate given by
Eqgs. (99b-d). It follows that any linear combination of the eigensolutions, i.e., any equilibrium solution of
the original laminate, determines a transformed solution of the image laminate according to Eq. (99). The
boundary conditions of the two solutions also transform according to Egs. (99b—d), i.e., the in-plane ki-
nematical and kinetic variables are changed, respectively, into the kinetic and kinematical variables asso-
ciated with the out-of-plane deformation. To find the boundary data « and v of the image laminate, one
needs to integrate the boundary forces and moments of the original laminate to obtain the data of ¥, and
¥, as functions of the boundary curve length s. This may be done as follows. Let

0 = (1/2)('P|y — l[’z‘x)
and let s denote the arc length along the boundary. Then it is easily shown that
d/ds(¥i— Vij) = Mn + (M, + 0)s, db/ds = Q,, (100a, b)

where s and n are the unit tangent and normal vectors along the boundary, M, and M, are the normal and
twisting moments per unit curve length, and Q, is the resultant of t,, per unit curve length. Hence ¥, (s) and
¥,(s) may be obtained by integrating the data of dM,,/ds + Q, and M, along the boundary:

My, +0 = / (dMy/ds + 0,)ds,  Wai — W1 — / (Myn + (M, + 0)s) ds. (101a, b)

Notice that dM,,/ds + O, and M,, are precisely the kinetic boundary data commonly required in the clas-
sical plate theory. Eq. (101) implies that they are equivalent to the boundary data of the moment potentials,
which arise as naturally in the present formulation as the boundary data of in-plane displacements. Notice
also that the relationship of Eq. (99¢) is expressed in terms of A", B* and D*. In the conventional laminate
theory based on the stiffness matrices A, B and D, the isomorphism of the image laminates is not easily
discerned.

Laminates with B = 0, and therefore B* = 0, show no coupling of in-plane and out-of-plane responses.
They form an important class which includes all homogeneous plates as well as all laminated plates that are
symmetric with respect to the mid-plane. For such laminates, Egs. (8), (9) and (12) yield M>(1) = 0. The
function space of general solutions is decomposable into two orthogonal subspaces, each of dimension four,
one associated with the bending-twisting stiffness matrix D* = ADA, and the other with the in-plane
compliance matrix A* = A~'. Eq. (23) is separated into the following two sets of scalar equations, each
determining the eigensolutions belonging to one of the two orthogonal subspaces:

M =0, My + (0 = o, (102a)

Mao(WE =0, Man(p)& + My (W& = 0. (102b)
The two sets of equations characterize, respectively, the bending-twisting problem and the stretching
problem, which are now uncoupled. These two uncoupled problems, determined respectively by
My (@) = {—2, =1, )}D* {12, =1, u}" and Moy () = {—p?, —1, u} (—A*){—2,—1,u}", have essentially an
identical mathematical structure except for the reversal of the kinematical and kinetic variables.
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The isomorphism has important implications. It implies that all analytic solutions of 2-D elasticity with
the compliance matrix A", including those that can be found in the standard references of Muskhelishvili
and Lekhnitskii, are transformed by Eq. (99) into deflection solutions of an image laminate having the
flexural stiffness D* numerically equal to A*, and subjected to boundary conditions that are complementary
to the original problem. For example, the plane-stress solution of an infinite plate subjected to the given
traction vector {1} = {fi(s), f2(s)} along the boundary of an arbitrarily-shaped hole is transformed by
Eq. (99) into the bending/twisting solution of the image plate with the deflection data {w,, —w,} =
[ {f1,/>}ds along the same hole boundary. Therefore, the class of bending solutions of symmetric aniso-
tropic laminates is coextensive with the class of plane-stress solutions of anisotropic elasticity. Through the
replacement of the variables {—e,, —¢,, —2¢,,0,,0,,0,} of the latter problem by the variables
{M,, M, —2M,, K, Ky, —Ky, }, and the compliance matrix A" by the new bending stiffness D*, the plane-
stress boundary-value problem of elasticity is changed exactly into the bending problem of plates. Although
Lekhnitskii (1968) pointed out the striking similarity between the differential equations governing the
unknown functions F and w in the two problems, the exact correspondence of the variables and the
boundary conditions was not clarified. Otherwise there would not have been the need of a bending theory
of classical plates separate from the 2-D theory of anisotropic elasticity.

Appendix A. Pseudo-metrics of the eigenspaces of the various types of eigenvalues

(I) Eigenspaces associated with normal eigenvalues—multiplicity one to four

oy = [07], "3[7\/11] = [1/(o'W)], (A.1a,b)
_ 0 3"W/2
(D[NZ] = |:5//W/2 5///W/6 + 5//W//2:| 3 (AZa)
_ 2/3)(1/8") = 2w /("W 2/
mwlz]_(l/W)[( /3)(1/ >2/a" /(3" W) /0 } (A.2b)
0 0 0"w/3
O = 0 8" W /6 W12+ 8" W' /3 , (A.3a)
3wz sWw12+8"w' /3 9w /304 6W W 6+ 8" W )3
=W W20 W)+ (5" 6")? /8 — 6 /(108") + W™ J (2w ") 2w /W — 8" /(26") 1
m[;j}] = (3/wd") 2w /w =" /(28") 2 01,
1 0 0
A.3b)
Q= Qg = [[{g[()]v §[1]7 &2]7 gm}v {é[O]v gma gma ém}] = [Qij]v (A4a)

where all elements €;; vanish except the following
Quy = Qu = 3Qy; =305 = (1/4)0“w,
Qo4 = Qi = (3/2)Q3 = (1/20){5(5)W + 56 W/}»
Q34 = Qi3 = (1/60) {80 W + 659w + 1569w},

Quu = (1/140) {0 W + 769w 4 216 w" + 3569w},
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Inversion of the matrix oy, may be facilitated by using the following expression of J, which is valid only
for a quadruple root of 6 = 0:

&= —(4},D5, = Bi) (e — o) (1 — p)*.

Taking the derivative of 6 up to the seventh order, evaluating the result at p = y,, substituting into Eq.
(A.4a), and then inverting the matrix, one obtains 0)[7\}4] whose components € " are given by

Q| = (12/ws")2W' W’ |W> — W" |3W) = 2(W' | W)+ 4(W" /W — 20" /W) (o — 1)
= 2000 /W) (1o — ﬁo)_z —40(py — ﬂo)_3}a

Q) =Q,) = 200 /W) = W' |W+8(W /W)y — o)~ +20(tty — o) "},

(A.4b)
_ — — / 11 —\—2 n
Q221 = 2913l = 29311 = =24W"/(W?") = 96(uy — 1)~/ (W3""),
Q2_31 = Q3_21 = 391_4l = 39;11 = 12/(w3"),
0 =0y =9, =9y =0,y =, =0.
(IT) Eigenspaces associated with abnormal eigenvalues—multiplicity two to four
o = [J(w), I (W] =M (1), oy =(2/8")W (), (A.5a,b)
/4 0 0
o = | 0 0 w'e" /3 ; (A.6a)
O W/51/1/3 W/511/1/6 _"_ W//51/1/3
3" /3 0 0
0)[:113] =3/ (W3 0 —(1/2)8" )" —w"/w' 1], (A.6D)
0 1 0
/4 0 0 0
_ 10 0 0 w's™ /4 )
Q= oy = 0 0 W/é"/'/6 W//éll///4 + W'5<5)/10 ) (A.7a)
0 W/é/////4 W//a/////4 + W/5(5)/10 W"’é””/4 + 3W”5(5>/20 4 W/é(ﬁ)/zo
/w 0 0 0
o 0 Qfl Qfl 4/(W/5////)
m[,44] - 0 Qi—il 6/(1/[/2’35”,/) O 5 (A7b)
0 4/(w'd") 0 0
where
92—21 _ 6{2W/5(5) + 5W”5””}2/(W/5W)3 _ 4{ W/5(6) + 3W//5(5) + 5W///§////}/(W/5////)2,
92—31 _ 7(6/5){2W/5(5) + SWﬁélm}/(W,(S”")z.
(IIT) Eigenspace associated with a superabnormal eigenvalue
/ / 0, 1/2)M”
oy = [T = |, v 2 k) (A.8a)

(1/2)M" (o) -~ (1/6)M" (1g) |
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B _W/l/ 3 W//
oy = (12/5") { W,,/ OM} : (A.8b)
Appendix B. Intrinsic tensor F +iG associated with the various types of eigenvalues
(F+iG)yyy = (1/0)IWIT, (B.1)
(F+1G)y = (2/0")(IWIT) +(2/3)(1/6") IWJT, (B.2)

(F+1G) sy = (3/8")(IWIT)" + (3/2)(1/8") (IWITY 4 3{(8"/(25") — 5 /10(5" ) IWT,

(B.3)
(F+1iG) yy = (4/8")(IWIT)" + (12/5)(1/8™) (IWIT)" + (12/31)(1/5"")" (IWITY'
+ (4/227)(1/8™)" IWJT, (B.4)
(F+iG),p = (2/3")IWIT, (B.5)
(F +1G) = (1/W) (A= pp") — (3/2W"){8" /2(8" ) + W" /W' }(WIWIT)"
+ 1/ (W' " {WIWIT — 531 — pp")JT}”
= (3/8")(IWIN)" + (3/2)(1/5") (IWJITY, (B.6)
(F+1G) = (4/3")(IWIT)" + (12/5)(1/6™) (JIWIT)"
+{(24/25)(89)/(89)" — (4/5)8 /(6" (IWITY’
= (4/8")(IWIT)" + (12/5)(1 /8" (IWITY" + (12/31)(1/8"")" (IWITY', (B.7)
(F+iG) gy = (4/8")(=IW"JT + 3JW"JT + 3JW"JT)
= (4/8")(IWIN)" + (12/5)(1/8™) (IWJIT)". (B.8)

Appendix C. Eigenvectors, general solutions and intrinsic tensors of eleven types of anisotropic laminates

The matrices @ and F + iG that occur in the following expressions are given, respectively, in Appendices
A and B for every type of eigenvalue.

(A) Non-degenerate laminates (four independent zeroth-order eigensolutions)

[ND-1-1-1-1}—Four distinct eigenvalues ;.

Z" = {IWp(u)), IWp (1), IWp(pi3), IWp(14) }, (C.la)
r=Re| Y filr+ m»)IWp()|, (C.1b)

Q = (@ (), o (1), o (), @1 (), (C.1c)



1850 W.-L. Yin | International Journal of Solids and Structures 40 (2003) 1825-1852

G=ill-2i > J(u)W(u)I ()" /6 ().

1<k<4
[ND-1-1-2A]—Two simple eigenvalues y; and p, and one double abnormal eigenvalue ;.
Z" = {IWp(1), JWp(11,), I (113) },

r=Re| > filr+ wy)IWp(u) + () {fs(x + moy), falx + )} |,

1<k<2
Q = (o (1), o (1), M (113)),

G =il = 2i(F +iG) (1) — 2i(F +1G) ) (1) — 2i(F +1G) 5 (13)-

Notice that f3 and f; in Eq. (C.2b) are independent functions of the same argument.
[ND-2A-2A]—Two double abnormal eigenvalues u, and p,.

7" = {J(w), I ()},
x=Re {J(ul){fl (4 ), Aol + )+ I) A6+ my), fale + my)}
Q= <M,(ﬂ1)aMl(ﬂ2)>v

G = ill - 2i(F +iG) 1y (1) — 2i(F + Gy (1)

(B) Degenerate laminates (require one first-order eigensolution)
[D-1-1-2]—Two simple eigenvalues y, and u, and one double normal eigenvalue y;.

z* = {IWo(u), IWp(11), W (113), (JWp) (115) }.

% = Re

D Sl + wy)IWp(wy) + {falx + uy)JWp}’(#a)l ;

1<k<3
Q = (o (1), o (1), O (13)),
G = ill = 2i(F +iG) jyy; (1) — 21(F +1G) ;) (1) — 2i(F 4 1G) jy (113)-
[D-2A-2]1—One double normal eigenvalue p; and one double abnormal eigenvalue .

2y = {IWp(). (W) (1), I (1) }.

%= Re i (x4 ) IWp() + {f(x + wr)IWpY (1) + J() {f5(x + 1), o+ 1)},

Q = (o (1), M (1)),
G =il = 2i(F +iG) (1) — 21(F +1G) 5 (12).
[D-1-3A}—One simple eigenvalue u; and one triple abnormal eigenvalue u,.

z+ = {IWp(u), 8" (1), (IWP) (1), (W) (1)},

(C.1d)

(C.2a)

(C.2b)

(C.2¢)

(C.2d)

(C.3a)
(C.3b)

(C.3¢)

(C.3d)

(C4a)

(C.4b)

(C.4ce)

(C.4d)

(C.5a)

(C.5b)

(C.5¢)

(C.5d)

(C.6a)
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% = Re[fi(x + 1) IWp(1y) + fo(x + )& (1) + {5 (x + wy) IWH} (1)
+ {falx + ) IWp} (1y)],

Q = (o (1), 03 (1)),

G = ill - 2i(F +iG) (1)) — 2i(F +iG) 5 (11s).

(C) Extra-degenerate laminates (require two higher-order eigensolutions)
[ED-1-31—One simple eigenvalue y; and one triple normal eigenvalue pu,.

z* = {IWo(i,), IWp(11), (TWp) (1), (IWp)" (1) },

% = Relfi(x + ) IWp(u,) + fo(x + 1) IWp (1) + {f3(x + 1) IWp} (1)
+ {falx + w)IWp} (1)),

Q = (o (1), o3 (1)),
G =il - 2i(F +1G)jyy (1) — 21(F +1G) 3 (1)
[ED-2-2]—Two normal double eigenvalues y; and u,.

z+ = {IWp(u), (IWp) (1), IWp (1), (IWp) (1) }

7= Re[fi(x + ) IWp(py) + {/2(x + ) IWp}Y (1) + f3(x + p120) IWp(11,)
+ {falx + 1) IWpY (1)),
Q = (@ (), O (1)),
G =il - 2i(F + iG)[Nz](Nl) —2i(F + iG)[NZ](#2)~
[ED-4A]—One quadruple abnormal eigenvalue g, which is not superabnormal.
z' = {g", 6", g% "),y =Relit” + L& + (HIWD) + (1IWD)"],
Q=ou, G=ill - 2i(F+iG), (1),

where é[o], é[”, §[2] and &B] are given by Egs. (55a—-d).
[ED-4AA]—One superabnormal eigenvalue g,.

Z"={I(u). I (o)}, % =Re[I ) {fi. o} + I (uo){fs, fa} Y],

(D) Ultra-degenerate laminates (require three generalized eigensolutions)
[UD-4]—One normal quadruple eigenvalue.

Z' = {JWp, (J'W + JW)p, (J'W + 2J'W + JW")p, (J"W + 3J"W' + 3J'W" + JW")p},

% = Re[/idWp + (/2JWp)' + (2IWp)" + (f2JWp)"],

1851

(C.6b)
(C.6c)

(C.6d)

(C.7a)

(C.7b)
(C.7¢)

(C.7d)

(C.8a)

(C.8b)
(C.8¢c)

(C.8d)

(C.9a,b)
(C.9c,d)

(C.10a,b)

(C.10c,d)

(C.11a)
(C.11b)
(C.11c,d)
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The following equation gives a concise way to express the general solutions of various types of laminates in
terms of the eigenvectors

1 = Re[Z'Df], (C.12)

where f denotes the four-dimensional column vector formed by four arbitrary analytic functions of x + uy
and D is the identity matrix if the laminate is nondegenerate. For degenerate laminates, one has

100 0
010 0

D=10 0 1 dds (C.13)
000 1

The D-operator of extra-degenerate laminates is given by Eq. (C.14a) below, except when the set
{11, o, i3, s } contains two double normal eigenvalues (Type 2A) or one superabnormal eigenvalue (Type
4AA). In those exceptional cases D is given by Eq. (C.14b):

10 0 0 1 d/du 0 0

1o 1 d/dp dP/dpd o 10 0

D=1o 0 1 2d/du| P10 0o 1 d/du (C.142,b)
00 0 1 0 0 0 1

Finally, for ultra-degenerate laminates one has

1 d/dp d*/dp d°/dgd
0 1 2d/du 3d*/du?

D= 1
0 0 1 3d/du (C.15)
0 0 0 1

After performing differentiation, the parameter u in each analytic function f;(x + py) and its derivatives
must be replaced by the particular (simple or multiple) eigenvalue associated with the kth eigenvector in Z.*.
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