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Abstract

The algebraic structure of the solution space of all types of anisotropic laminates is determined. The full space is

shown to be the direct sum of a number of orthogonal eigenspaces, one for each simple or multiple eigenvalue, whose

dimension equals the multiplicity. There are eight different types of eigenvalues, which combine to yield eleven distinct

types of laminates with peculiar representations of the general solution. All such representations are explicitly obtained,

along with the pseudo-metrics based on the binary product of the eigenvectors. This leads to the projection operators in

the solution space, spectral sums and intrinsic tensors analogous to the Stroh–Barnett–Lothe tensors in 2-D elasticity.

The present theoretical results are obtained by adopting a mixed formulation involving the deflection function and

Airy�s stress function, and by using new laminate elasticity matrices different from the conventional stiffness matrices A,
B and D. The new formulation also discloses an isomorphism relating each anisotropic laminate to an image laminate,

such that every equilibrium solution of the former directly yields an image solution of the latter by interchanging the

kinematical and kinetic variables and the in-plane and out-of-plane variables. This implies, in particular, that the

classical bending theory of homogeneous plates and symmetric laminates is not a distinct subject, despite its historical

development and pedagogical recognition, but is mathematically identical to the plane stress problem of anisotropic

elasticity.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Laminated plates, generally distinguished by strong anisotropy and coupling of the in-plane and out-of-

plane responses, occupy a central place in advanced composite structures. Most textbooks on the mechanics

of composite materials devote a significant portion of space to the theory and analysis of laminated plates.

There is a voluminous literature on the subject, including extensive analytical and numerical solutions of

various types of laminates subjected to a variety of loads and boundary conditions. However, theoretical
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studies on the mathematical properties and structure of the solutions of anisotropic laminates are

scarce, when compared to the similar studies in two closely related areas: homogeneous isotropic plates and

two-dimensional anisotropic elasticity. While the theory of anisotropic elasticity has received considerable

attention since the pioneering work of Lekhnitskii (1963) and Stroh (1958), culminating in the recent
publication of a major reference work by Ting (1996), no comparable development at the theoretical level

has appeared on the subject of anisotropic laminates. More than half a century after its publication,

Lekhnitskii�s book (1968, first Russian edition 1944) remains the standard reference in the field.

Lekhnitskii obtained the general solutions of anisotropic laminates for the case when the material

eigenvalues are all distinct. Coupling between in-plane and out-of-plane deformation was not considered.

This results in a general solution containing two arbitrary analytic functions of two distinct complex

variables and their complex conjugates. Many important problems of anisotropic plates, including elliptical

plates and infinite plates with elliptical holes or elliptic inclusions, as well as rectangular plates and tri-
angular plates, have been solved exactly or approximately using the complex variable representation and

Lekhnitskii�s method.

In the closely related problem of 2-D anisotropic elasticity, Lekhnitskii (1963) obtained the general

solution of the stress potentials in terms of the anisotropic elastic compliances. In contrast, the formalism of

Eshelby et al. (1953) and Stroh (1958, 1962) was based on the anisotropic elastic moduli and used the

displacement functions as the primary unknown variables. Both formalisms were developed under the

restrictive assumption that the eigenvalues are all distinct. In their study of coupled anisotropic plates, Lu

(1994) and Lu and Mahrenholtz (1994) adopted the ERSS (Eshelby–Reed–Shockley–Stroh) formalism for
the in-plane variables, and combined it with the out-of-plane deformation through bending–stretching

coupling. The primary unknown variables are the three components of the mid-plane displacement, u, v and
w, and the constitutive relations are represented by the three stiffness matrices A, B and D of the classical

laminated plate theory. Their work extended Lekhnitskii�s analysis of symmetric laminates to coupled

laminates. However, it was also restricted by the assumption of distinct eigenvalues. The various degenerate

cases with repeated eigenvalues were not investigated. The equations characterizing the eigenvalue problem

were given in terms of the matrices A, B and D, but the eigenvectors and eigensolutions were not obtained

in explicit forms, due to the inherent complexity of the ERSS formalism.
The main objective of the present paper is twofold. First, Lekhnitskii�s complex variable method for two-

dimensional elasticity and the bending of uncoupled anisotropic plates will be extended to general aniso-

tropic laminates with coupling between in-plane and out-of-plane deformation. This step is of considerable

importance because laminate configurations that are asymmetric with respect to the mid-plane, and hence

exhibiting the coupling effect, are found in newer applications of advanced composites, if not by design then

occasionally due to degradation and damage such as delamination. We assume that both the in-plane and

out-of-plane deformations are small so that, besides constitutive coupling, there is no coupling effect

associated with geometrical nonlinearity. While the problem is basically identical to the one treated by Lu
and Mahrenholtz, the present formulation adopts the Lekhnitskii formalism rather than the ERSS for-

malism in so far as it regards the in-plane deformation. This leads to a reduced eigenvalue problem of a

lower dimension, and to simple, analytical expressions of the eigenvectors and eigensolutions that may be

given explicitly. The second objective of this paper is to fully develop the complex variable method to

include all degenerate cases, i.e., when the laminate has repeated eigenvalues and when the original

Lekhnitskii method does not provide the full set of eigenvectors. In such cases, higher-order eigenvectors

must be obtained to make up for the deficiency. The matter is far from merely academic because isotropic

and transversely isotropic plates are degenerate. With regard to both objectives, the result of the present
investigation is complete. No particular case is left unresolved.

In recent works on two-dimensional elasticity (Yin, 1997, 2000), it was shown that the formulation

in terms of the elastic compliance coefficients, as initiated by Lekhnitskii, has decisive advantages over

the displacement formulation using the anisotropic stiffness. In the first approach, the determination of
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eigensolutions is reduced to the eigenvalue problem of a 2� 2 matrix MðlÞ, which may be solved effort-

lessly to give simple analytical expressions of the eigenvectors. The ERSS formalism leads to a 3� 3

characteristic matrix, and to lengthy analytical expressions even for the zeroth-order eigenvectors. Al-

though he made no reference to the Russian work, Stroh gave dual derivations of the eigenvalue problem,
one in terms of the anisotropic moduli and the other in terms of the elastic compliances, and commented on

the advantage of the latter method in providing explicit expressions of the eigenvectors for the stress po-

tentials. He even said to prefer to express the results in terms of such eigenvectors rather than the eigen-

vectors of displacements, and that the experimental data of anisotropic compliances were more readily

available. Hence the term ‘‘Stroh formalism’’, which has recently been widely used to characterize a for-

malism with a strong bias toward the use of anisotropic moduli and displacement eigenvectors, notwith-

standing the complexity of analysis and results, is historically less than accurate. It has been shown (Yin,

2000) that the algebraic complexity of the stiffness-based formulation becomes more acute in the various
degenerate cases, where the higher-order eigenvectors must be obtained through relations that involve all

lower-order eigenvectors that share the same eigenvalue.

For the present study of general anisotropic laminates, the best formulation is to use as the primary

unknowns the in-plane stress function F ðx; yÞ, i.e., Airy�s function, and the deflection function wðx; yÞ. This
choice appears obvious in view of the wide use of F in two-dimensional elasticity, and of w in the classical

plate theory. Indeed, F and w are the preferred choice of the variables in von Karman�s theory of plates,

where the coupling between the in-plane and the out-of-plane deformation arises not from the constitutive

relation but from geometrical nonlinearity. However, just as the ERSS formalism departs from the general
use of F in 2-D elasticity, many existing works in classical laminate theory either use the three displacement

functions u, v and w as the primary unknowns, or use the purely kinetic variables including the stress and

moment resultants. This results in complicated equations, unavailability of general solutions except in

restricted cases, and an obscure analytical formulation in which the fascinating algebraic structure and

properties of the solution space remain largely unexplored and unrecognized.

If F and w and their second derivatives––the membrane forces and curvatures––are to be taken as the

primary unknown variables, then the constitutive relations must express the complementary variables, the

in-plane strains and the bending and twisting moments, in terms of the primary unknowns. The conven-
tional stiffness matrices A, B and D of anisotropic laminates (Christensen, 1991), which express the kinetic

variables of the moments and membrane forces in terms of the purely kinematical variables of the cur-

vatures and membrane strains, are ill-suited for the analytical task of determining the eigensolutions. They

will be replaced by new elasticity matrices A�, B� and D� expressing the moments and the in-plane strains

in terms of the curvatures and the membrane forces. In this new formulation of anisotropic laminates, the

determination of the eigensolutions is again reduced to a trivial eigenvalue problem of a 2� 2 charac-

teristic matrix MðlÞ. Although the eigenvectors of the present problem have a higher dimension, many of

the analytical results and expressions turn out to be formally identical to those of the 2-D anisotropic
elasticity.

There are five distinct types of eigenvalues in 2-D anisotropic elasticity with the multiplicity varying from

one to three. Their various combinations result in a classification of all anisotropic materials into

five different types. For the general problem of coupled anisotropic laminates, the present analysis yields

eight types of eigenvalues with the multiplicity varying from one to four, and eleven types of laminates.

Each type of laminate has a distinct representation of the general solution. The types of eigenvalues depend

on the multiplicity, and on whether the eigenvalue is normal ðMðlÞ 6¼ 0Þ, abnormal ðMðlÞ ¼ 0Þ, or super-
abnormal ðMðlÞ ¼M0ðlÞ ¼ 0Þ. If an eigenvalue possesses a smaller number of independent (zeroth-order)
eigenvectors than its multiplicity, then higher-order eigenvectors must be found to make up for the defi-

ciency in the representation of the general solution. These higher-order eigenvectors and the associated

higher-order eigensolutions are derived in Section 2 of the present paper. It is found, a posteriori, that they

can be obtained by differentiating appropriate analytical expressions of the zeroth-order eigenvectors and
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eigensolutions with respect to the parameter l, followed by evaluation at the multiple eigenvalue. The

presentation in Section 2 is very terse. A full exposition may be found in Yin (2003).

In Sections 3–5, the mathematical structure of the solution space of all eleven types of anisotropic

laminates is investigated. It is shown first that, for every laminate, the eight-dimensional solution space is
the direct sum of a number of orthogonal subspaces (to be called eigenspaces), one for each distinct

eigenvalue, whose dimension equals the multiplicity of the eigenvalue. Orthogonality is defined with respect

to the binary product of Eq. (26), which generally yields a complex number for a pair of eigenvectors sharing

the same eigenvalue. Although the binary product is not an inner product, it endows the solution space and

its orthogonal subspaces with a nonsingular pseudo-metric. This confirms the linear independence of the

eigenvectors and eigensolutions. For a laminate with unequal eigenvalues, the eigenspaces are one-

dimensional, and orthogonality of eigenvectors is as easily proved as in the corresponding case of 2-D

anisotropic elasticity. Proof of the orthogonality of eigenspaces is not trivial for degenerate, extra-degen-
erate and ultra-degenerate laminates. Furthermore, the inner structure of the eigenspace associated with a

multiple eigenvalue, as characterized by the pseudo-metric, is significantly different between a normal

eigenvalue and an abnormal eigenvalue. The pseudo-metrics of the eigenspaces associated with eight dif-

ferent types of eigenvalues are obtained in Section 4 and listed in Appendix A. They form the basis of the

discrete spectral analysis in Section 5, and of the representations of general solutions and intrinsic tensors

for all eleven types of laminates as given in Section 6.

When the new elasticity matrices A�, B� and D� are used instead of the conventional stiffness matrices A,
B and D, and when appropriate changes are made in the order and in certain algebraic signs of the
components of the moment and the curvature, the coupled differential equations governing the redefined

variables reveal full symmetry with regard to two groups of variables: one group consisting of �u, �v and
F , and the other group comprising the moment potentials and the deflection function w. In this symmetry

relationship, the kinematical variables of membrane strains change into the kinetic variables of bending and

twisting moments, and the membrane forces change into the curvature components. This isomorphism

associates each anisotropic laminate that has the elasticity matrices A�, B� and D� with an image laminate

having the corresponding elasticity matrices D�, �B�T and �A�, such that every equilibrium solution of

the original laminate is transformed into a corresponding equilibrium solution of the image laminate by the
dual interchange of the kinematical variables with the kinetic variables and the in-plane variables with the

out-of-plane variables. In particular, kinematical boundary conditions of the in-plane displacements are

mapped into kinetic boundary conditions of the moment potentials, and vice versa.

This isomorphism between the image laminates emerges clearly in the present formulation which uses the

new elasticity matrices A�, B� and D�. It is obscured in the conventional theory of laminates that uses the

stiffness matrices A, B and D. For a laminate with no bending/stretching coupling, the symmetry relation

implies that all in-plane elasticity solutions may be converted into the bending solutions of the image

laminate. From both theoretical and computational points of view, the plane-stress elasticity problem,
whether isotropic or anisotropic, is essentially identical to the bending problem of classical thin plates, and

the latter should never have been developed, and continue to be taught, as if it were a distinct subject. In

other words, the totality of bending solutions of anisotropic laminates with mid-plane symmetry is coex-

tensive with the totality of 2-D plane-stress anisotropic elasticity solutions. Hence the rich inventory of

isotropic and anisotropic plane-stress solutions, including those contained in the works of Muskhelishvili

(1963) and Lekhnitskii (1963), are easily converted to corresponding bending/twisting solutions of the

image laminates, but the two sets of solutions have boundary conditions of the complementary types.

The results and proofs in this paper are established in a general mathematical form using combinatorials
with variable indices, so that their validity depends neither on the dimensions of vectors and matrices nor

on the multiplicity of roots. Hence the present proofs and results (particularly Sections 3–5 on the ortho-

gonality of eigenspaces, pseudo-metrics and projection operators, which are inadequately treated in Yin

(2000)) may apply to 2-D anisotropic elasticity by merely changing the dimension of eigenvectors from
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eight to six. They may also be applicable to other related problems of anisotropic media having a similar

mathematical structure, such as problems of surface waves and piezoelectric materials. The principal re-

quirement is that the primary unknown variables––curvatures and membrane forces in the present case––

are derivable as the components of the second gradients of scalar functions (w and F ). This important
relation, however, remains unexploited in the ERSS formalism, which accounts for its unwieldiness.

2. Eigensolutions

In the conventional theory of anisotropic laminated plates, the constitutive relations are given in terms of

three symmetric, 3� 3 stiffness matrices A, B and D (Christensen, 1991):

n ¼ Aeþ Bj; m ¼ BeþDj; ð1Þ

where

e ¼ f�x; �y ; 2�xygT ¼ fu;x; v;y ; u;y þ v;xgT; j ¼ fw;xx;w;yy ; 2w;xygT; ð2a; bÞ

n ¼ fNx;Ny ;NxygT; m ¼ fMx;My ;MxygT; ð2c; dÞ

and u and v are the mid-plane tangential displacements and w is the deflection function. The equilibrium

equations imply that the stress and moment resultants be derivable from three potential functions F ðx; yÞ,
W1ðx; yÞ and W2ðx; yÞ:

Nx ¼ F;yy ; Ny ¼ F;xx; Nxy ¼ �F;xy ; ð3Þ

My ¼ W1;x; Mx ¼ W2;y ; �2Mxy ¼ W1;y þ W2;x: ð4Þ

Let

v � fw;y ;�w;x; F;y ;�F;x;W1;W2;�u;�vgT; ð5Þ

/ � fw;yy ;w;xx;�w;xy ; F;yy ; F;xx;�F;xygT; ð6aÞ

h � fMy ;Mx;�2Mxy ;��x;��y ;�2�xygT: ð6bÞ

Then Eq. (1) may be rewritten as

h ¼ C�/; ð7Þ

where

C� � D� B�

B�T �A�

� �
� KðD� BA�1BÞK KBA�1

A�1BK �A�1

� �
; ð8aÞ

K �
0 1 0

1 0 0

0 0 �2

2
4

3
5: ð8bÞ

Notice that A� is the in-plane compliance matrix and the elements of B� have the dimension of thickness.
The following matrix functions are important to the present theory:
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UðlÞ �

l 0 0 0 0 0 0 0

0 �1 0 0 0 0 0 0
�1 0 0 0 0 0 0 0

0 0 l 0 0 0 0 0

0 0 0 �1 0 0 0 0

0 0 �1 0 0 0 0 0

2
6666664

3
7777775
; EðlÞ �

0 0 0 0 1 0 0 0

0 0 0 0 0 l 0 0
0 0 0 0 l 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 l
0 0 0 0 0 0 l 1

2
6666664

3
7777775
; ð9a; bÞ

YðlÞ �

1 0 0 0 0 0

�l 0 1 0 0 0
0 0 0 1 0 0

0 0 0 �l 0 1

2
664

3
775; PðlÞ �

�l2 0
�1 0

l 0

0 �l2

0 �1

0 l

2
6666664

3
7777775
; ð10a; bÞ

J1ðlÞ �

�l 0

1 0

0 �l
0 1

2
664

3
775; J2ðlÞ � YðlÞC�PðlÞ; JðlÞ � J1ðlÞ

J2ðlÞ

� �
; ð11a; b; cÞ

MðlÞ � PðlÞTC�PðlÞ: ð12aÞ
The components of the matrix MðlÞ are quadratic functions of l, i.e.,

M11ðlÞ ¼ f�l2;�1; lgD�f�l2;�1; lgT;
M12ðlÞ ¼ M21ðlÞ ¼ f�l2;�1; lgB�f�l2;�1; lgT;
M22ðlÞ ¼ f�l2;�1; lgð�A�Þf�l2;�1; lgT:

ð12bÞ

Consider first the zeroth-order eigensolutions, which have the following form

v ¼ f ðxþ lyÞn; ð13Þ
where n is a complex constant vector and f is an arbitrary analytic function involving a complex parameter

l. Substituting Eq. (13) into (5), and using w;xy ¼ w;yx and F;xy ¼ F;yx, one obtains

ð�1=lÞ n1

n2

	 

¼ n3

n4

	 

¼ g: ð14Þ

Then Eqs. (6a,b) and (7) become

/ ¼ f 0ðxþ lyÞUðlÞn ¼ f 0ðxþ lyÞPðlÞg; h ¼ f 0ðxþ lyÞEðlÞn; ð15a; bÞ

EðlÞn ¼ C�PðlÞg: ð16Þ
Premultiplying Eq. (16) by the matrices Y and PT yields, respectively,

½04�4; I4�n ¼ fn5; n6; n7; n8gT ¼ YðlÞC�PðlÞg; ð17Þ

MðlÞg ¼ 0; ð18Þ
where 04�4 and I4 denote four-dimensional zero matrix and identity matrix, respectively. Combination of

(14) and (17) yields an expression of the eight-dimensional vector n in terms of g:

n ¼ JðlÞg; ð19Þ
where the matrix function JðlÞ is defined by Eq. (11).
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Eq. (18) has a nontrivial solution if l is a root of the characteristic equation

dðlÞ � Det½MðlÞ� ¼ 0: ð20Þ

For each root of Eq. (20), Eq. (18) yields at least one nontrivial g. Then Eqs. (19) and (13) give a nontrivial

vector n and a solution v. The roots of Eq. (20) are called eigenvalues, and n and v is, respectively, the

associated eigenvector and eigensolution.

According to (12), Eq. (20) is a polynomial equation in l of the eighth degree with real coefficients. Hence

its complex roots occur in conjugate pairs. It has been shown (Yin, 2003) that the equation cannot have real

roots if the elastic strain energy of the laminate is positive definite. If all four complex conjugate pairs of

eigenvalues are distinct, then each eigenvalue yields an eigenvector and an eigensolution. An appropriate

linear combination of the four complex conjugate pairs of eigensolutions gives the general solution with
real values for the various physical quantities.

If Eq. (20) has multiple roots, then the preceding procedure may yield fewer than eight independent

eigensolutions, and additional (higher-order) eigensolutions must be obtained to supplement the preceding

(zeroth-order) eigensolutions. The form of these higher-order eigensolutions depends on the type and

multiplicity of the eigenvalue. An eigenvalue l is called normal ifMðlÞ of Eq. (12) is not the null matrix. It

is called abnormal ifMðlÞ is the null matrix butM0ðlÞ is not, and superabnormal ifMðlÞ ¼M0ðlÞ ¼ 0. The

multiplicity may vary from one to four for a normal eigenvalue, and from two to four for an abnormal

eigenvalue. A superabnormal eigenvalue must be a quadruple root, because it is a root of all three scalar
equations MijðlÞ ¼ 0. Thus there are eight different types of eigenvalues, one of which is superabnormal,

three are abnormal, and all others normal.

Consider an eigenvalue l of multiplicity p (26 p6 4). A N th order eigensolution (N < p) has the fol-

lowing expression

v½N � ¼
X

06 j6N

ðN ; jÞyjf ðjÞðxþ lyÞn½N�j�; ð21Þ

where ðN ; jÞ � N !=fðN � jÞ!j!g, f ðjÞ denotes the jth derivative of an arbitrary analytic function f , and
n½0�; n½1�; . . . ; n½N � are eight-dimensional complex constant vectors. These constant vectors may be expressed

in terms of two-dimensional vectors g½0�; g½1�; . . . ; g½N � and the matrix JðlÞ in the following manner

n½j� ¼ JðlÞg½j� þ ðj; 1ÞJ0ðlÞg½j�1� þ ðj; 2ÞJ00ðlÞg½j�2� þ ðj; 3ÞJ000ðlÞg½j�3�; ð22Þ
where

g½j� ¼ 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

� �
n½j� ð06 j6NÞ

and it is understood that g½j� ¼ 0 if j is a negative integer. g½0�; g½1�; . . . ; and g½N � are determined by the

following system of equationsX
06 j6 p

ðp; jÞMðjÞðlÞg½p�j� ¼ 0 ðp ¼ 0; 1; . . . ;NÞ: ð23Þ

Here MðjÞ denotes the jth derivative of the matrix defined by Eq. (12).

The identity involving MðlÞ and its adjoint matrix WðlÞ
MðlÞWðlÞ ¼ dðlÞI ð24Þ

may be differentiated with respect to l repeatedly to yield additional identitiesX
06 j 6N

ðN ; jÞMðN�jÞðlÞWðjÞðlÞ ¼ dðNÞðlÞI: ð25Þ
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Since dðNÞðlÞ ¼ 0 whenever 06N 6 p � 1, one hasX
06 j6N

ðN ; jÞMðN�jÞðlÞWðjÞðlÞ ¼ 0 ð06N 6 p � 1Þ: ð26Þ

If l0 is a normal eigenvalue, so that the 2� 2 symmetric matrix Wðl0Þ is of rank one, then Wðl0Þ has at
least one nonvanishing diagonal element. For otherwise W11 ¼ W22 ¼ 0 and then it would follow from

Det½W� ¼ 0 that W12 ¼ 0, so thatWðl0Þ would be the zero matrix. We define the column selector q based on

the position of the larger diagonal element of Wðl0Þ:

q ¼ f1; 0gT if jW11ðl0ÞjP jW22ðl0Þj;
f0; 1gT otherwise;

	
ð27aÞ

W � qTWðl0Þq; . . . ;W 000 � qTW000ðl0Þq: ð27bÞ
The definition of q ensures that, for a normal eigenvalue l0, gðl0Þ ¼Wðl0Þq is always a nontrivial vector
and it yields a zeroth-order eigenvector n½0� ¼ Jðl0ÞWðl0Þq. For a multiple normal eigenvalue, the system of

equations (23) has the following solutions ðN 6 p6 1Þ

g½j� ¼WðjÞðlÞq ðj ¼ 0; 1; . . . ;NÞ; ð28Þ

where eachWðjÞðlÞ is the adjoint matrix ofMðjÞðlÞ. Substituting (28) into (22), one obtains the higher-order

eigenvectors n½j�. Then Eq. (21) gives the eigensolutions of the corresponding order containing an arbitrary

analytic function f ðxþ lyÞ.
For an abnormal eigenvalue l,MðlÞ vanishes so that Eq. (18) is trivially satisfied by an arbitrary g. Two

zeroth-order eigensolutions are obtained by choosing g to be f1; 0gT and f0; 1gT successively. The corres-

ponding eigenvectors are the two columns of Jðl0Þ, and Eq. (21) gives two zeroth-order eigensolutions.

If l0 is an abnormal eigenvalue of multiplicity three or four, then Mðl0Þ ¼Wðl0Þ ¼ 0 and dðl0Þ ¼
d0ðl0Þ ¼ d00ðl0Þ ¼ 0, but M0ðl0Þ and W0ðl0Þ are not zero matrices. The relation d00ðl0Þ ¼ 0 reduces to

2W 0
11ðl0ÞW 0

22ðl0Þ � 2W 0
12ðl0Þ

2 ¼ 0. Hence W 0
11ðl0Þ and W 0

22ðl0Þ cannot both vanish; otherwise W0ðl0Þ would
be the zero matrix. We define, for an abnormal eigenvalue l0,

q̂q ¼ f1; 0gT if jW 0
11ðl0ÞjP jW 0

22ðl0Þj;
f0; 1gT otherwise;

	
ð29aÞ

W � q̂qTWðl0Þq̂q ¼ 0; W 0 � q̂qTW0ðl0Þq̂q; . . . ; W 000 � q̂qTW000ðl0Þq̂q: ð29bÞ
Then g½1� �W0ðl0Þq̂q is always a nontrivial vector, and it satisfies Eq. (23) for N ¼ 1 in view of Eq. (26),
which for N ¼ 1 reduces to M0WþMW0 ¼ 0 since d0 vanishes for a repeated eigenvalue. The complete set

of solutions of Eq. (23) is given by ðN 6 p � 1Þ

g½j� ¼WðjÞðlÞq̂q ð16 j6NÞ: ð30Þ

The higher-order eigenvectors and eigensolutions are obtained by substituting (30) into (22) and then into

(21).

A superabnormal eigenvalue l0 has the two zeroth-order eigenvectors given by the two columns of Jðl0Þ.
In addition, it has two first-order eigenvectors given by the two columns of J0ðl0Þ.

For the eigensolutions of the various orders expressed by Eqs. (21) and (22), the curvatures, mid-plane

strains and stress and moment resultants are given by

/½N � ¼ yNf ðNþ1ÞUn½0� þ
X

06 j6N�1

ðN ; jÞyjf ðjþ1ÞfUn½N�j� þ ðN � jÞU0n½N�j�1�g; ð31aÞ
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h½N � ¼ yNf ðNþ1ÞEn½0� þ
X

06 j6N�1

ðN ; jÞyjf ðjþ1ÞfEn½N�j� þ ðN � jÞE0n½N�j�1�g: ð31bÞ

In the literature on anisotropic elasticity, the higher-order eigensolutions are often called generalized

eigenfunctions. The term ‘‘eigensolution’’ is preferred because the real parts of all eigensolutions are indeed

equilibrium solutions of the corresponding anisotropic laminated plate.

The zeroth-order eigenvector n½0�, obtained from Eqs. (18) and (19), is a polynomial function of l to be

evaluated at the specific eigenvalue. If one withholds the evaluation, treats l instead as a variable, and
differentiates Eqs. (13), (19) and (15a,b) repeatedly with respect to l, followed by evaluation at the specific

eigenvalue, one obtains precisely the same equations as (21), (22) and (31a,b) except that all jth-order
quantities in the equations are replaced by the jth derivatives of the corresponding zeroth-order quantities

with respect to l. Therefore, the higher-order eigenvectors and eigensolutions can be obtained formally by

repeated differentiation of appropriate analytical expressions of the zeroth-order eigenvectors and eigen-

solutions, followed by evaluation at the specific eigenvalue. This derivative rule (Yin, 2000, 2003) will be

used frequently in the following analysis.

3. Orthogonal eigenspaces

The four complex conjugate pairs of eigenvalues will be arranged as a sequence l ¼ fl1; l2; l3; l4;
�ll1; �ll2; �ll3; �ll4g, such that the first four elements have positive imaginary parts and, among these four, any

double or triple eigenvalue appears after all simple eigenvalues. A repeated eigenvalue appears in l as many

times as its multiplicity. The eigenvectors will be assembled as the columns of a matrix in a one-to-one

correspondence to the eigenvalues in l and, for those associated with a common multiple eigenvalue, ar-
ranged in the increasing order j. This yields an 8� 8 eigenmatrix Z, such that the last four columns of Z are

the complex conjugates of the first four, i.e.,

Z ¼ fZþ;Z
þg: ð32Þ

For each anisotropic laminate, the eigenmatrix Z completely determines the general solution. It also de-

termines certain real-valued matrices (analogous to the Stroh–Barnett–Lothe tensors in 2-D anisotropic

elasticity) that characterize the intrinsic structure of the solution space.

The eight-dimensional solution space may be decomposed into a number of orthogonal subspaces, one

for each distinct simple or multiple eigenvalue. These subspaces will be called eigenspaces. Orthogonality is

defined with respect to the binary product, which may be introduced as follows for any two matrices U and

V of row dimension eight (their column dimensions need not be equal):

sU;Vt � UTIIV ¼ sV;Ut
T
; where II � 04�4 I4

I4 04�4

� �
: ð33Þ

The binary product of a matrix U with itself yields the matrix UTIIU which is always symmetric.
If U and V are submatrices of the eigenmatrix Z, each consisting of a number of eigenvectors, then, under

a rotation of the coordinates in the x–y plane, one has

x�

y�

	 

¼ Q2

x
y

	 

; where Q2 �

cos h sin h
� sin h cos h

� �
: ð34Þ

The eigenvectors and the submatrix Zþ transform in the following manner

n� ¼ Q8n; ðZþÞ� ¼ Q8Z
þ; ð35Þ

and so do U and V, where

Q8 � hQ2;Q2;Q2;Q2i ð36Þ
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denotes the block diagonal matrix formed by four identical submatrices Q2. It is easily verified that

II II ¼ I8; QT
8 IIQ8 ¼ II: ð37a; bÞ

Applying the binary product to two distinct eigenvectors n1 and n2, to the matrices U and V, and to their

images after rotation, one obtains, by using Eq. (37b)

sn�
1; n

�
2t ¼ sn1; n2t; sU�;V�t ¼ sU;Vt: ð38a; bÞ

Furthermore,

X � sZþ;Zþt ¼ sðZþÞ�; ðZþÞ�t: ð39Þ

Therefore, the binary products of eigenvectors, and of the submatrices of the eigenmatrix Z, are invariant

under a rotation of the coordinates. Hence the matrix X characterizes the intrinsic structure of the four-
dimensional space spanned by the eigenvectors of Zþ, and will be referred to as a pseudo-metric of that

space. It possesses some properties of a metric, but it is complex-valued and certainly not positive definite.

For two eigensolutions v and v0, the binary product

sv; v0t ¼ W0
1 W0

2

w;x w;y

����
����þ �u0 �v0

F;x F;y

����
����þ W1 W2

w0
;x w0

;y

����
����þ �u �v

F 0
;x F 0

;y

����
����

is a sum of terms of the same physical dimension. In contrast, the usual scalar product yields a dimen-

sionally inconsistent sum.

Eqs. (35), (38a,b) and (39) are the transformation rules for the values of the vector and matrix functions.

If they are to be applied to the matrix functions rather than to their values, then one has to keep in mind
that the matrices associated with the original coordinates are functions of l, whereas the starred matrices

are functions of l� � ðl cos h � sin hÞ=ðcos h þ l sin hÞ, because, under the coordinate transformation of

Eq. (34), the complex variable xþ ly transforms into cos h þ l sin h multiplied by the new complex variable

x� þ l�y�.
A key relationship between the matrix functions JðlÞ and MðlÞ may be verified by routine algebraic

manipulation:

ðl � l̂lÞsJðlÞ; Jðl̂lÞt ¼MðlÞ �Mðl̂lÞ; ð40Þ

where the arguments l and l̂l may or may not be the same. Differentiation with respect to l gives

ðl � l̂lÞsJ0ðlÞ; Jðl̂lÞtþ sJðlÞ; Jðl̂lÞt ¼M0ðlÞ: ð41aÞ

Repeated differentiation yields, for 16 s6N � 1,

oN�s
l osl̂lfðl � l̂lÞsJðlÞ; Jðl̂lÞtg ¼ ðl � l̂lÞsJðN�sÞðlÞ; JðsÞðl̂lÞtþ ðN � sÞsJðN�s�1ÞðlÞ;JðsÞðl̂lÞt

� ssJðN�sÞðlÞ; Jðs�1Þðl̂lÞt
¼ 0: ð41bÞ

For l ¼ l̂l, Eqs. (41a) and repeated use of (41b) give

sJðlÞ; JðlÞt ¼M0ðlÞ;
sJðN�sÞðlÞ; JðsÞðlÞt ¼ fs!ðN � sÞ!=ðN þ 1Þ!gMðNþ1ÞðlÞ ð06 s6N 6 3Þ: ð42a; bÞ

Eqs. (22) and (42b) imply the following important expression for the binary product of any two eigen-
vectors of arbitrary orders ð06 p; q6 3Þ sharing the same eigenvalue
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sn½p�ðlÞ; n½q�ðlÞt ¼
X

06 k6 p

X
06 l6 q

ðp; kÞðq; lÞfk!l!=ðk þ lþ 1Þ!gðg½p�k�ÞTMðkþlþ1Þg½q�l�

¼ p!q!
X

qþ16 s6 pþqþ1

f1=ðp þ qþ 1� sÞ!s!gðg½pþqþ1�s�ÞT
X

s�q6m6 s

ðs;mÞMðmÞg½s�m�: ð43Þ

While the preceding expressions are always valid, repeated differentiation of Eq. (40) yields an equation
which is valid only if l and l̂l are not equal:

oplo
p
l̂lsJðlÞ; Jðl̂lÞt ¼ ð�1Þqþ1

X
06 s6 p

ðp; sÞðsþ qÞ!ð�l þ l̂lÞ�ðsþqþ1Þ
Mðp�sÞðlÞ

þ ð�1Þpþ1
X

06 t6 q

ðq; tÞðp þ tÞ!ðl � l̂lÞ�ðpþtþ1Þ
Mðq�tÞðl̂lÞ: ð44Þ

If n½p�ðlÞ and n½q�ðl̂lÞ are eigenvectors of orders p and q respectively ð06 p; q6 3Þ, associated with two distinct

eigenvalues l and l̂l, then Eqs. (22) and (23) yield

sn½p�ðlÞ; n½q�ðl̂lÞt

¼
X

06 s6 p

X
06 t6 q

ðp; sÞðq; tÞg½p�s�ðlÞTsJðsÞðlÞ; JðtÞðl̂lÞtg½q�t�ðl̂lÞ

¼
X

06 s6 p

X
06 t6 q

ð�1Þtþ1
X

06m6 s

ðp; sÞðq; tÞðs;mÞðmþ tÞ!ð�l þ l̂lÞ�ðtþmþ1Þg½p�s�ðlÞT Mðs�mÞðlÞg½q�t�ðl̂lÞ

þ
X

06 s6 p

X
06 t6 q

ð�1Þsþ1
X

06m6 t

ðp; sÞðq; tÞðt;mÞðmþ sÞ!ðl � l̂lÞ�ðsþmþ1Þg½p�s�ðlÞTMðt�mÞðl̂lÞg½q�t�ðl̂lÞ

¼
X

06 t6 q

X
06m6 p

ð�1Þtþ1ðq; tÞðp;mÞðt þ mÞ!ð�l þ l̂lÞ�ðtþmþ1Þg½q�t�ðl̂lÞT
X

m6 k6 p

ðp � m; k � mÞMðk�mÞðlÞg½p�k�ðlÞ

þ
X

06 s6 p

X
06m6 q

ð�1Þsþ1ðp; sÞðq;mÞðsþ mÞ!ðl � l̂lÞ�ðsþmþ1Þg½p�s�ðlÞT

�
X

m6 k6 q

ðq� m; k � mÞMðk�mÞðl̂lÞg½q�k�ðlÞ ¼ 0: ð45Þ

Notice that the two innermost sums in the last expression vanish in view of Eq. (23). Eq. (45) shows the

orthogonality of the eigenvectors associated with distinct eigenvalues. In the terminology of vector space,

the eight-dimensional solution space is the direct sum of a number of eigenspaces that are mutually ortho-

gonal in the sense of the binary product. Each eigenspace is spanned by the eigenvectors of various orders

associated with a single distinct eigenvalue, whose multiplicity equals the dimension of that eigenspace.

Orthogonality of the zeroth-order eigenvectors follows easily from our Eqs. (18) and (40). It was shown

by Stroh (1958) using a different proof

The orthogonality relation (45) implies that

sZþ;Z
þ
t ¼ sZ

þ
;Zþt ¼ 0: ð46Þ

Eqs. (39) and (46) yield

sZ;Zt ¼ sfZþ;Z
þg; fZþ;Z

þgt ¼ X 0

0 X

� �
: ð47Þ

Consequently,

ðDet½Z�Þ2 ¼ Det½X�Det½X�: ð48Þ
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The orthogonality relation (45) also implies that the symmetric matrix X is in the block diagonal form,

where each block xk is associated with a distinct eigenvalue lk. xk is the pseudo-metric of the eigenspace of

lk. If lk has the multiplicity p, we let its p independent eigenvectors be arranged in ascending orders and

combined into an 8� p matrix Xk. Then

xk ¼ sXk;Xkt; ð49Þ

X ¼ hxki; ð50Þ
and Eq. (48) becomes

ðDet½Z�Þ2 ¼
Y
k

jDet½xk�j2: ð51Þ

In the next section, the pseudo-metrics xk will be explicitly obtained for the eigenspaces of all eight types

of normal, abnormal and superabnormal eigenvalues, and their inverse matrices will be found analytically.

Hence the matrices X and Z are also nonsingular, and they have unique inverses X�1 and Z�1. Notice that

the invertibility of Z implies that the eight eigenvectors and the associated eigensolutions are indeed in-

dependent. This has been previously assumed but has never been proved for the various degenerate cases.

4. Pseudo-metrics of the various types of eigenspaces

It was pointed out in the previous section that there are eight distinct types of eigenvalues depending on

multiplicity and degeneracy or nondegeneracy. To each type of eigenvalue is associated a type of eigen-

space, spanned by a set of independent eigenvectors of various orders, whose dimension equals the multi-

plicity of the eigenvalue.
The eigenvectors that span the p-dimensional eigenspace of a multiple eigenvalue l are generally not

orthogonal. For two eigenvectors sharing a common normal eigenvalue, substitution of solution (28) into

Eq. (43) yields the important expression of the binary product

sn½i�1�; n½j�1�
t ¼ ðW dÞðiþj�1Þði� 1Þ!ðj� 1Þ!=ðiþ j� 1Þ!
¼ fði� 1Þ!ðj� 1Þ!=ðiþ j� 1Þ!gfdðiþj�1ÞW þ ðiþ j� 1; 1Þdðiþj�2ÞW 0

þ ðiþ j� 1; 2Þdðiþj�3ÞW 00 þ ðiþ j� 1; 3Þdðiþj�4ÞW 000g; ð52Þ

where negative-order derivatives are taken to be zero.

Eq. (52) yields the pseudo-metrics x½N1�, x½N2�, x½N3� and x½N4� of the eigenspaces associated with a normal

eigenvalue of multiplicity from one to four. The inverses of these matrices may also be obtained. The results

are given in Eqs. (A.1)–(A.4) of Appendix A. These equations are formally identical to the corresponding

results in plane anisotropy given by Eqs. (4.13), (4.14), (5.13a) and (5.13b) in Yin (2000), even though the

functions d and l2 in the latter work are polynomials of degrees six and two, respectively, while d and W in

the present analysis are polynomials of higher degrees.
We next consider the eigenspace associated with an abnormal eigenvalue l, for which MðlÞ, and hence

also WðlÞ, are zero matrices while M0ðlÞ and W0ðlÞ are not. There are two independent zeroth-order

eigenvectors given by the two columns of JðlÞ. For N ¼ 2, Eq. (26) reduces to

2M0ðlÞW0ðlÞ ¼ d00ðlÞI: ð53Þ
If l is of multiplicity two, then d00ðlÞ 6¼ 0 and therefore Det½M0ðlÞ� cannot vanish. According to Eq. (42a),

the two-dimensional eigenspace has the pseudo-metric

x½A2� ¼ sJðlÞ; JðlÞt ¼M0ðlÞ: ð54aÞ

1836 W.-L. Yin / International Journal of Solids and Structures 40 (2003) 1825–1852



Eq. (53) gives the inverse matrix

x�1
½A2� ¼ ð2=d00ÞW0ðlÞ: ð54bÞ

If l0 is a triple abnormal eigenvalue, then three eigenvectors may be chosen as follows to ensure their

linear independence:

n½0� ¼ Jðl0Þ
0 1

1 0

� �
q̂q; n½1� ¼ ðJWÞ0q̂q ¼ JW0q̂q; n½2� ¼ ðJWÞ00q̂q ¼ ðJW00 þ 2J0W0Þq̂q; ð55a; b; cÞ

where q̂q is the column selector defined by Eq. (28a). For an abnormal quadruple eigenvalue one has, in

addition,

n½3� ¼ ðJWÞ000q̂q ¼ ðJW000 þ 3J0W00 þ 3J00W0Þq̂q: ð55dÞ
Using Eqs. (55a–c) and (53) with d00ðl0Þ ¼ 0, one obtains the pseudo-metric x½A3� of the eigenspace

associated with a triple abnormal eigenvalue. x½A3� and its inverse matrix are given in Eq. (A.7).

Once again, Eqs. (54a,b), (55a–c) and Eq. (A.7) are formally identical to the corresponding results in

plane anisotropic elasticity (Yin, 2000), even though the matrices and eigenvectors in the present problem

have higher dimensions. However, the results for a triple abnormal eigenvalue, as given by Eqs. (4.18),

(4.19) and (4.20a,b) in Yin (2000), contain errors. The errors result from missing a factor 2 for the

term containing J0 and K0 in Eqs. (4.18) and (4.19). The two equations should be replaced by the present

Eq. (55c). In addition, Eqs. (4.20a,b) in that paper should be replaced by present Eqs. (A.7a,b), where W is

to be changed into l2. However, the matrices L, H and S, as given by Eq. (4.21) of the paper, are correct
and formally in agreement with the present results for laminated plates with a triple abnormal

eigenvalue.

If l is an abnormal quadruple eigenvalue, then one obtains the pseudo-metric X ¼ x½A4� from Eqs.

(55a–d) and dðlÞ ¼ d0ðlÞ ¼ d00ðlÞ ¼ d000ðlÞ ¼ 0. The result and the inverse matrix are given in Eq. (A.8) of

Appendix A.

For a superabnormal eigenvalue l0, both Mðl0Þ and M0ðl0Þ are null matrices. The governing equation

(23) imposes no restriction on g½0� and g½1�. Four eigenvectors are obtained by using the columns of the

matrices Jðl0Þ and J0ðl0Þ. This yields the pseudo-metric

x½SA� ¼ sfJ; J0g; fJ; J0gt ¼ 02�2 ð1=2ÞM00ðl0Þ
ð1=2ÞM00ðl0Þ ð1=6ÞM000ðl0Þ

� �
; ð56aÞ

whose inverse is

x�1
½SA� ¼ ð12=d0000Þ �W000=3 W00

W00 02�2

� �
: ð56bÞ

Notice that the matrix product of (56a) and (56b) yields the identity matrix provided that

6M00W00 ¼ d0000I; M000W00 �M00W 000 ¼ 0:

The first equality is implied byM ¼M0 ¼W ¼W0 ¼ 0 and Eq. (25) with N ¼ 4. The second equality easily

follows from the following expressions for a superabnormal l0

MðlÞ ¼ ðl � l0Þ
2ðl � �ll0Þ

2C; WðlÞ ¼ ðl � l0Þ
2ðl � �ll0Þ

2C0; ð57a; bÞ

where

C ¼ jl0j
�4 D�

22 B�
22

B�
22 �A�

22

� �
; C0 ¼ jl0j

�4 �A�
22 �B�

22

�B�
22 D�

22

� �
: ð57c; dÞ
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5. Projection operators and related intrinsic tensors

It was shown in the preceding two sections that, for each distinct eigenvalue lk of multiplicity p
(16 p6 4), the p-dimensional eigenspace has a nonsingular pseudo-metric xk ¼ sXk;Xkt referred to the
eigenvectors in Xk. Consider the 8� 8 symmetric matrix

Xkx
�1
k X

T
k ¼ Fk þ iGk; ð58Þ

where Fk and Gk are real, symmetric matrices. Postmultiplying by IIXk, and using Eq. (49), one obtains

Xk ¼ ðFk þ iGkÞIIXk: ð59Þ

Therefore, the linear transformation ðFk þ iGkÞII maps every vector in the eigenspace of lk into itself. On

the other hand, if n� is an eigenvector associated with a different eigenvalue, then it is orthogonal to all

columns of Xk, and Eq. (58) yields ðFk þ iGkÞIIn� ¼ 0. Therefore, ðFk þ iGkÞII is the projection operator into
the eigenspace of lk, i.e., any eight-dimensional vector v may be decomposed as v ¼ ðFk þ iGkÞIIvþ v0,
where the first part belongs to the eigenspace of lk, and v

0 is orthogonal to that eigenspace. For the con-

jugate eigenvalue �llk, Eqs. (49) and (58) are replaced by their complex conjugates, and one finds that the

projection operator is given by ðFk � iGkÞII. This yields the decomposition of the identity transformation

into orthogonal projections:

I8 ¼
X
k

ðFk þ iGkÞIIþ
X
k

ðFk � iGkÞII ¼ 2
X
k

Fk

 !
II; ð60Þ

or, equivalently,

2
X
k

Fk ¼ II;

where the summation extends over all eigenvalues with Im½l� > 0.
A similar argument, applied to the operators lkðFk þ iGkÞII and �llkðFk � iGkÞII, yields the following

equations instead of the last two:

TIIXk ¼ lkXk; TIIXk ¼ �llkXk; ð61Þ

T �
X
k

lkðFk þ iGkÞ þ
X
k

�llkðFk � iGkÞ: ð62Þ

Obviously, T is a real, symmetric matrix. Eq. (61) shows that the real matrix TII has its eigenvalues and
eigenvectors coinciding with the laminate eigenvalues and eigenvectors. Let hli denote the diagonal matrix

of the eight eigenvalues arranged in the same order as the associated eigenvectors in Z. Then, substitution

of Eq. (58) and its complex conjugate into Eq. (62) yields

TII ¼ ZhlihX�1;X
�1iZTII ¼ ZhliZ�1: ð63Þ

When one projection is followed by another, the effect is the null transformation except when the two

projections are identical. Hence ðFk þ iGkÞIIðFk � iGkÞ ¼ 0 and, for k 6¼ j,

ðFk þ iGkÞIIðFj þ iGjÞ ¼ 0; ðFk � iGkÞIIðFj þ iGjÞ ¼ 0:

Separating into real and imaginary parts, one obtains

FkIIFk þGkIIGk ¼ GkIIFk � FkIIGk ¼ 0;

FkIIFj ¼ FkIIGj ¼ GkIIFj ¼ GkIIGj ¼ 0 for k 6¼ j:
ð64Þ
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When a projection is repeated, the effect is the same as applying the projection only once. Hence

FkIIFk �GkIIGk ¼ Fk; GkIIFk þ FkIIGk ¼ Gk:

It follows that

FkIIFk ¼ �GkIIGk ¼ ð1=2ÞFk; GkIIFk ¼ FkIIGk ¼ ð1=2ÞGk: ð65a; bÞ
Summing Eq. (58) over all eigenvalues with positive imaginary parts, and then do the same for all ei-

genvalues with negative imaginary parts, one obtains

ð1=2ÞðFþ iGÞ � ZþX�1ðZþÞT ¼
X
k

Fk þ i
X
k

Gk; ð66Þ

as well as the complex conjugate of (66). Hence,

F ¼ 2
X
k

Fk ¼ II; G ¼ 2
X
k

Gk; ð67a; bÞ

where the summations also extend over all eigenvalues with Im½l� > 0. Eq. (66) and its complex conjugate

imply

ð1=2ÞðIþ iGIIÞZþ � Zþ; ð1=2ÞðIþ iGIIÞZþ � 0; ð68a; bÞ

ð1=2ÞðI� iGIIÞZþ � Z
þ
; ð1=2ÞðI� iGIIÞZþ � 0: ð68c; dÞ

Hence ð1=2ÞðIþ iGIIÞ and ð1=2ÞðI� iGIIÞ are, respectively, the projection operators from the solution

space to the subspace spanned by Zþ and to its conjugate subspace. These relations also yield

GIIZþ � �iZþ; GIIZ
þ � iZ

þ
; ð69a; bÞ

i.e., the matrix GII has �i and þi as quadruple eigenvalues and the corresponding eigenvectors are,

respectively, the four columns of Zþ and Z
þ
:

GIIZ ¼ Zh�iI4; iI4i: ð69cÞ
Notice also that Eq. (62) and (64a,b) yield the following and their complex conjugate equalities

TIIðFk þ iGkÞ ¼ ðFk þ iGkÞIIT ¼ lkðFk þ iGkÞ:
Eq. (65a) gives Fk ¼ �2GkIIGk. Substitution into Eq. (60) yields �4

P
k GkIIGk ¼ II. Using the ortho-

gonality relations of Eq. (64) for k 6¼ j, one obtains

GIIGII ¼ �I8: ð70Þ
We define the 4� 4 submatrices L, S, H of G, and the submatrices Lk, Sk and Hk of Gk:

G � �L ST

S H

� �
� 2

X
k

Gk ¼ 2
X
k

�Lk ST
k

Sk Hk

� �
: ð71Þ

Each eigenspace Xk contributes the term Gk to Eq. (71), and the conjugate space Xk contributes the same.

This accounts for the factor 2 in the last two expressions of (71). Symmetry of Gk implies that Lk, Hk, L and

H are symmetric, while Sk and S are generally not symmetric. Eq. (70) implies that

G�1 ¼ �IIGII;

HL� SS ¼ LH� STST ¼ I4; ð72Þ

LS ¼ �ðLSÞT; SH ¼ �ðSHÞT: ð73Þ
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Notice that X is composed of diagonal blocks xk, and Z
þ is formed by joining the corresponding

submatrices Xk. By summing Eq. (58) over k, using Eq. (67), and doing the same for the complex conjugate

of (58), one obtains

ZhX�1;X
�1iZT ¼ 2

X
k

Fk ¼ II; ð74Þ

ZhX�1;�X
�1iZT ¼ 2i

X
k

Gk ¼ iG: ð75Þ

When the last equation is postmultiplied by �iII, it yields the following expression which allows L, H and S
to be calculated directly from all eigenvectors and the reciprocal base vectors without first obtaining X:

GII ¼ �iZhX�1;�X
�1iZTIIZZ�1 ¼ Zh�iI4; iI4iZ�1: ð76Þ

This remarkable simple expression also follows directly from Eq. (69c). Notice that Eqs. (74) and (75) may

be combined to yield Eq. (66) and its complex conjugate.

Under the coordinate transformation of Eq. (34), X is unchanged according to Eq. (39), while Zþ and its

complex conjugate transform according to Eq. (35). Hence the left-hand side of Eq. (75), and therefore also

the matrix G, has to be premultiplied byQ8 and postmultiplied byQT
8 to obtain the image matrices after the

rotation of coordinates. Consequently, the real matrices G, L, H and S conform to the tensorial trans-

formation rule

G� ¼ Q8GQ
T
8 ; L� ¼ Q4LQ

T
4 ; H� ¼ Q4HQ

T
4 ; S� ¼ Q4SQ

T
4 ; ð77Þ

where Q4 � hQ2;Q2i.
The Stroh–Barnett–Lothe tensors in 2-D anisotropic elasticity satisfy equations identical in form to (72)

and (73), and other equations obtained by substituting the first equation of (71) into (74)–(77), except that

these tensors have the dimension three. Now the same identities have been established for all anisotropic

laminates, for which L, H and S are 4� 4 real matrices.

Let sk be a nonsingular, complex linear transformation in the eigenspace of lk. Then it maps the column

vectors of Xk into the column vectors that form another matrix X�
k ¼ Xksk. Consider

x�
k � sX�

k ;X
�
kt ¼ sTk ½Xk;Xk�sk ¼ sTk xksk;

x�
k has the inverse matrix which satisfy

X�
kx

��1
k X�

k ¼ ðXkskÞfs�1
k x�1

k ðsTk Þ
�1gðsTkXT

k Þ ¼ Xkx
�1
k Xk ¼ Fk þ iGk: ð78Þ

That is, Fk þ iGk and the projection operator ðFk þ iGkÞII are invariant under an affine transformation of

the base vectors of the eigenspace from the set Xk to another set X�
k .

Consider, similarly, a nonsingular linear transformation, s : Zþ ! ðZþÞ� ¼ Zþs, in the four-dimensional

space spanned by the vectors of Zþ, and the conjugate transformation �ss : �ZZþ ! ð�ZZþÞ� ¼ Zþ�ss. Eq. (77)
yields

Z� �iI4 0

0 iI4

� �
ðZ�Þ�1 ¼ ST �L

H S

� �
; ð79Þ

where Z� ¼ fðZþÞ�; ð�ZZþÞ�g. Hence L, H and S are invariant under an arbitrary affine transformation of the

base vectors that preserves the complex conjugate relation. In other words, these matrices can be calculated

from Eq. (79) using any set of four linearly independent eigenvectors and their complex conjugates. The

results are not different. (On the other hand, different choices of base vectors yield different pseudo-metrics,
and the simple forms given in Appendix A are obtained only if the higher-order eigenvectors are related to

the lower-order ones according to the derivative rule.) There is neither an advantage nor a need to nor-

1840 W.-L. Yin / International Journal of Solids and Structures 40 (2003) 1825–1852



malize the eigenvectors. Normalization aims to find a set of eigenvectors whose scalar or binary product

results in the identity matrix. This is generally impossible when the laminate is degenerate, extra-degenerate,

or ultra-degenerate. Certain lower-order eigenvectors n associated with a triple or quadruple eigenvalue are

found to satisfy sn; nt ¼ 0 For example, Eq. (A.4a) shows that the two lowest-order eigenvectors of a
quadruple normal eigenvalue yield X11 ¼ X22 ¼ 0. Such eigenvectors cannot be normalized. Even for ei-

genvectors with sn; nt 6¼ 0, normalization generally results in complicated analytical forms of expression,

which make the implementation of the derivative rule unduly cumbersome. The present remarks concerning

normalization of eigenvectors apply also to the case of two-dimensional elasticity. Although normalization

has not found a role in the Lekhnitskii formalism, it has often been adopted in the ERSS formalism of the

nondegenerate cases with no apparent benefit.

Since the binary product is complex-valued, it does not define a metric in the vector space of solutions.

Hence it cannot endow the latter with a Euclidean geometrical structure. Orthogonality and projections are
valid concepts associated with the binary product in a complex vector space, but normalization and unit

vectors require a length measure which is not provided for all vectors in an eigenspace associated with a

multiple eigenvalue. Not only is normalization an alien concept, it is also not needed since the physical

solutions and physical entities such as L, H and S, given by Eqs. (71) and (75) or (79), are invariant under

any affine transformation of the base vectors.

For the eigenspace associated with a normal eigenvalue, the eigenvectors may indeed be normalized in

a special way (but not in the sense of requiring various eigenvectors to have ‘‘unit magnitudes’’), so

that the resulting pseudo-metric xk depends only on the derivatives of d and not on W as defined in Eq.
(27b). Instead of using the eigenvectors n½j� ¼ ðdj=dljÞ ðJWÞq, one may use n½j� ¼ ðdj=dljÞðJW=

p
W Þq.

Then, instead of Eq. (52), one has the following simple expression for the components of the pseudo-

metric:

xij ¼ sn½i�1�; n½j�1�
t ¼ dðiþj�1Þði� 1Þ!ðj� 1Þ!=ðiþ j� 1Þ!: ð80Þ

This pseudo-metric depends only on the various derivatives of d of order greater than p � 1 (since the

lower-order derivatives vanish). For an abnormal eigenvalue, it does not seem feasible to normalize the

eigenvectors so that the resulting pseudo-metric depends only on the derivatives of d.
The pseudo-metric hX; �XXi of the eight-dimensional solution space has the inverse matrix hX�1; �XX�1i. The

latter is the pseudo-metric of the dual space spanned by the reciprocal base vectors. The reciprocal base
vectors are the columns of the 8� 8 matrix Y ¼ ðZ�1ÞT (henceforth dissociated from the previous definition

of Y given by Eq. (10a)). One has

ZTY ¼ YTZ ¼ YZT ¼ ZYT ¼ I8: ð81Þ
From every relationship valid for the original base vectors, a corresponding relationship may be easily

derived for the dual base vectors. Some useful relations may be paired as follows

ZTIIZ ¼ hX; �XXi; YTIIY ¼ hX�1; �XX�1i; ð82Þ

Y ¼ IIZhX�1; �XX�1i; Z ¼ IIYhX; �XXi; ð83Þ

ZhX�1; �XX�1iZT ¼ II; YhX; �XXiYT ¼ II; ð84Þ

ZhX�1;� �XX�1iZT ¼ iG; YhX;� �XXiYT ¼ iIIGII; ð85Þ

ZhI4;�I4iZ�1 ¼ iGII; YhI4;�I4iY�1 ¼ iIIG; ð86Þ

TIIZ ¼ Zhli; T�1IIY ¼ Yh1=li: ð87Þ
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Eqs. (85) and (86) are important for determining the real invariant matrix G and its 4� 4 submatrices L, S

and H. Eq. (87) characterizes the eigenvectors and the reciprocal base vectors as the eigenvectors of the

matrices T II and T�1 II, respectively.

In the literature on 2-D anisotropic elasticity, the matrix corresponding to Zþ is often split into an upper
square matrix B and a lower square matrix A. Adopting this notation for the present theory of anisotropic

laminates, we write

Z ¼ B B

A A

� �
: ð88Þ

Eqs. (39) and (46) become, respectively

X ¼ ATBþ BTA; ATBþ BTA ¼ 0; ð89a; bÞ

while Eqs. (74) and (75) yield

2Re½BX�1BT� 2Re½BX�1AT�
2Re½AX�1BT� 2Re½AX�1AT�

� �
¼ 04�4 I4

I4 04�4

� �
;

2Im½BX�1BT� 2Im½BX�1AT�
2Im½AX�1BT� 2Im½AX�1AT�

� �
¼ �L ST

S H

� �
:

Hence,

L ¼ 2iBX�1BT; H ¼ �2iAX�1AT; S ¼ �ið2AX�1BT � IÞ: ð90Þ

Furthermore, Eq. (69a) yields

ðST þ iIÞB ¼ LA; ðSþ iIÞA ¼ �HB: ð91a; bÞ

Let b and a denote the four-vectors formed by the first and the last four elements of a zeroth-order

eigenvector n. Then one may obtain from Eq. (17) the following expressions of a and b in terms of each

other:

a ¼ YðlÞC�

l 0 0 0

0 �1 0 0

�1 0 0 0

0 0 l 0

0 0 0 �1

0 0 �1 0

2
666666664

3
777777775
b;

b ¼

0 0 �1 0 0 0

0 �1 0 0 0 0

0 0 0 0 0 �1

0 0 0 0 �1 0

2
6664

3
7775ðC�Þ�1

1 0 0 0

0 l 0 0

l 1 0 0

0 0 1 0

0 0 0 l

0 0 l 1

2
666666664

3
777777775
a: ð92a; bÞ

For a higher-order eigenvector n½j� (jP 1), the corresponding relations between b½j� and a½j� are determined

by the derivative rule, i.e., by differentiating Eq. (92a,b) j-times with respect to l. Notice that these relations
depend on l, and the form of the relations depends on the order j, whereas Eqs. (91a,b) and their complex

conjugate relations have the same form for all eigenvectors in Zþ or Z
þ
.
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Eqs. (92a,b) and the derived relations for the higher-order eigenvectors n½j� imply that the matrices B

and A uniquely determine each other. Let A ¼ HB. Substitution into Eq. (89a) yields BTðH þ HTÞB ¼
X. Since X is nonsingular, so must be B, and the invertibility of A then follows because A uniquely de-

termines B. Finally, Eq. (90) implies that L,H, and S� iI are all nonsingular. Eqs. (91a,b) may be rewritten
as

A ¼ �ðS� iIÞL�1B; B ¼ ðST � iIÞH�1A: ð93Þ

The identities (89b), (90)–(91) and (93), are valid for all anisotropic laminates, irrespective of degeneracy.

6. General solutions and intrinsic tensors of the eleven types of laminates

According to Eq. (67b), the intrinsic matrix G and its submatrices L, H and S are, respectively, the

sums of the corresponding matrices Gk, Lk,Hk and Sk of the various eigenspaces. The latter can be obtained
for all eight types of normal, abnormal and superabnormal eigenvalues according to Eq. (58). The results

are found and shown in this section. We will frequently use the following identity, which is easily

verified

WqqTW ¼ WW� dðI� qqTÞ: ð94Þ

Hence, for any scalar h,

hJWqqTWJT ¼ hW JWJT � dhðJJT � JqqTJTÞ:

Differentiating the last equation N times with respect to l and evaluating the result at an eigenvalue of

multiplicity p, one obtains, for N 6 p,

ðdN=dlN ÞðhJWqqTWJTÞ ¼ ðdN=dlN ÞðhW JWJTÞ; ð95aÞ

because d ¼ d0 ¼ � � � ¼ dðp�1Þ ¼ 0, and

ðdp=dlpÞðhJWqqTWJTÞ ¼ ðdp=dlpÞðhW JWJTÞ � dðpÞhðJJT � JqqTJTÞ: ð95bÞ

Consider first the eigenspaces associated with normal eigenvalues of multiplicity 16 p6 4. As mentioned

in the last section, if one chooses the eigenvectors to be ðJw=pW ÞðNÞq, N ¼ 0; 1; . . . ; p � 1, then one obtains

Eq. (80) instead of (52). Hence the expressions (A.1)–(A.4) for the pseudo-metrics and their inverses are

simplified, and they depend only on d and its nonvanishing derivatives, not on W and its derivatives.

Observing that ðx�1
k Þrs ¼ 0 whenever r þ s > p þ 1, Eqs. (58), (80) and (95a,b) yield

Fk þ iGk ¼
X

16 r6 p

X
16 s6 1þp�r

ðx�1
k ÞrsðJW=

ffiffiffiffiffi
W

p
Þðr�1ÞqqTðWJT=

ffiffiffiffiffi
W

p
Þðs�1Þ

¼
X

16 r6 p

ðx�1
k Þ1r

X
16 s6 1þp�r

ðr � 1; s� 1ÞðJW=
ffiffiffiffiffi
W

p
Þðr�tÞqqTðWJT=

ffiffiffiffiffi
W

p
Þðs�1Þ

¼
X

16 r6 p

ðx�1
k Þ1rðJWqqTWJT=W Þðr�1Þ ¼

X
16 s6 p

ðx�1
k Þ1sðJWJ

TÞðs�1Þ
: ð96Þ

Using the new expressions of the inverses of the pseudo-metrics which do not depend on W , one obtains

from Eq. (96) the matrix Fþ iG for normal eigenvalues of multiplicity from one to four. The results are
given as Eqs. (B.1)–(B.4) in Appendix B.
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For an abnormal double eigenvalue, Eq. (54b) yields

ðFþ iGÞ½A2� ¼ ð2=d00ÞJW0JT: ð97Þ

For an abnormal eigenvalue of multiplicity 3 or 4, one stays with the eigenvectors as given by Eqs.

(55a–d). Using W ¼ 0 and W ¼ 0, and substituting Eqs. (A.7b) and (A.8b) into (96), one obtains

ðFþ iGÞ½A3� and ðFþ iGÞ½A4�. They are given as Eqs. (B.6) and (B.7) of Appendix B.

For a superabnormal eigenvalue, Eq. (56b) yields

ðFþ iGÞ½SA� ¼ ð4=d0000Þð�JW000JT þ 3J0W00JT þ 3JW00J0T Þ

¼ ð4=d0000ÞðJWJTÞ000 þ ð12=5Þð1=d0000Þ0ðJWJTÞ00: ð98Þ

The final expressions of Eqs. (97), (B.6), (B.7), (98) for abnormal and superabnormal eigenvalues are found

to be identical to those for a normal eigenvalue of the same multiplicity, i.e., ðFþ iGÞ½N2�, ðFþ iGÞ½N3� and

ðFþ iGÞ½N4� reduce to ðFþ iGÞ½A2�, ðFþ iGÞ½A3� and ðFþ iGÞ½A4�, respectively, when JWJ
T vanishes for an

abnormal eigenvalue, and ðFþ iGÞ½A4� reduces to ðFþ iGÞ½SA� when ðJWJTÞ0 also vanishes for a super-

abnormal eigenvalue. These relations are also found a posteriori, that is, without a deductive proof.

As shown in Sections 3 and 4, the solution space of every anisotropic laminate is decomposable into

orthogonal eigenspaces associated with simple or multiple eigenvalues which belong to one of the eight

distinct types. Combinations of the various types of eigenvalues and the corresponding eigenspaces yield

eleven mutually exclusive types of anisotropic laminates, each having a distinct analytical expression of the

general solution and a distinct form of the pseudo-metric X ¼ sZþ;Zþt.

The eleven types of laminates are designated by notations starting with ND, D, ED and UD
(nondegenerate, degenerate, extra-degenerate and ultra-degenerate) and followed by a sequence of

symbols, one for each distinct eigenvalue of the laminate, denoting the multiplicity and, if not normal,

abnormality or superabnormality. In the preceding analysis, only the eigensolutions associated with

eigenvalues that have positive imaginary parts were explicitly described. These eigensolutions must be

combined with the conjugate eigensolutions associated with the conjugate eigenvalues, in such a way

that the respective coefficient functions fk and gk are related by gkðxþ �llyÞ ¼ fkðxþ lyÞ. Then the

combined solutions always yield real values of the components of v, / and h in Eqs. (5) and (6a,b).

Each type of laminate has four complex conjugate pairs of eigensolutions with the orders varying from
zero to three. Each eigensolution, regardless of the order, contains one independent arbitrary analytic

function.

For all eleven types of laminates, the matrix Zþ, the general solution vector v, the pseudo-metric

X and the intrinsic tensor ð1=2ÞiG are listed in Appendix C. These representations of the general

solutions are fundamental to the analysis and solution of anisotropic laminate problems. Homo-

genous isotropic plates belong to the class of laminates that have superabnormal eigenvalues �i. Such

laminates are extra-degenerate (i.e., belong to the class [ED-4A] in the following notation). For these

laminates, the present general solution reduces to Goursat�s representation of biharmonic func-
tions. Laminates with isotropic in-plane responses and anisotropic bending and twisting responses are

usually called ‘‘quasi-isotropic.’’ Such laminates generally have abnormal double eigenvalues �i, and

two distinct complex conjugate pairs of simple eigenvalues. These laminates are nondegenerate, and

they belong to the class [ND1-1-2A]. Clearly, the general solution of anisotropic laminates, which

manifests coupling between in-plane extension/shearing and out-of-plane bending/twisting, is far richer

in content and variety than the lower dimension problem of 2-D anisotropic elasticity. The systematic

and powerful analytical tools that have been developed for the plane elasticity problems may be

modified and applied to anisotropic laminates, to produce a body of solutions no less copious and
significant.
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7. Isomorphisms and image laminates

In view of the similarity between the fourth-order differential equation governing the stress function of

plane anisotropic elasticity and the corresponding equation governing the deflection function of anisotropic
laminates, Lekhnitskii (1968, p. 283) observed that the bending problem of symmetric anisotropic laminates

is closely related to the plane-stress problem of anisotropic elasticity. However, the exact nature of the

relationship remains to be clarified. In this section, the relationship is examined in the broader context of

laminates with generally nonvanishing coupling matrix B�. It is shown that there is an isomorphism which

associates every anisotropic laminate with an image laminate having closely related elasticity matrices, and

which maps every equilibrium solution of the original laminate into a complementary solution of the image

laminate. This transformation interchanges the bending variables with the in-plane variables. It also re-

verses the roles of the kinematical and kinetic variables. That is, the out-of-plane kinematical variables of
the original solution corresponding to the in-plane kinetic variables of the image solution, and vice versa.

Therefore, the boundary conditions of the original laminate and of the image laminate must be comple-

mentary, and cannot be identical.

We first recall that the subspace of solutions defined by the four eigenvectors in Zþ are identical in

structure to the conjugate subspace defined by the elements of Z
þ
. Real-valued physical solutions are

always obtained by combining mutually conjugate solutions of the two subspaces in a symmetric way.

Besides the automorphism connecting the two subspaces associated with Zþ and Z
þ
, there is another one-

to-one correspondence between the equilibrium solutions of an anisotropic laminate with the elasticity
matrices A�, B�, D�, and the equilibrium solutions of another laminate with the elasticity matrices D�=h2,
�ðB�ÞT and h2A� (where h is a characteristic thickness parameter and we will henceforth take h ¼ 1). In this

correspondence relation, the roles of rF and rw are interchanged, as are the roles between the dis-

placements u, v and the moment potentials W1 and W2. As a result, kinematical, kinetic and mixed boundary

conditions also change into complementary conditions.

The formal similarity of the first three and last three elements of / and h

/ � fw;yy ;w;xx;�w;xy ; F;yy ; F;xx;�F;xygT;

h � fW1;x;W2;y ;W1;y þ W2;x;�u;x;�v;y ;�ðu;y þ v;xÞgT;

suggests the consideration of the following transformation

n½j� ! h!4;�!4in½j�; v½j� ! h!4;�!4iv½j�; ð99a; bÞ

/½j� ! !6/
½j�; h½j� ! �!6h

½j�; ð99c; dÞ

C� � D� B�

B�T �A�

� �
! �!6C

�!6 � A� �B�T

�B� �D�

� �
; ð99eÞ

g½j� ! !2g
½j�; MðlÞ ! �!2M!2; ð99f ; gÞ

EðlÞ ! �!6EðlÞh!4;�!4i; UðlÞ ! !6UðlÞh!4;�!4i; PðlÞ ! !6PðlÞ!2; ð99h; i; jÞ

where

!2 �
0 1

1 0

� �
; !4 �

02�2 I2
I2 02�2

� �
!6 �

03�3 I3
I3 03�3

� �
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satisfy

!2!2 ¼ I2; !4!4 ¼ I4; !6!6 ¼ I6; h!4;�!4ih!4;�!4i ¼ I8:

It is easily verified that Eqs. (7), (21)–(23) and (31a,b) remain satisfied by the transformed quantities.
Furthermore, since Det½�!2 M !2� ¼ �Det½M�, the eigenvalues are unchanged under the transformation

of Eq. (99). Consider a laminate with the elasticity matrices A�, B� and D�, and an image laminate whose

corresponding elasticity matrices are numerically equal to D�, �B�T and A�, respectively (discrepancies in

physical dimensions may be taken care of by introducing appropriate dimensional multiplicative factors).

Then the two laminates have the same eigenvalues, and their eigenvectors are related by Eq. (99a). For

every eigensolution of the original laminate, there is an eigensolution of the image laminate given by

Eqs. (99b–d). It follows that any linear combination of the eigensolutions, i.e., any equilibrium solution of

the original laminate, determines a transformed solution of the image laminate according to Eq. (99). The
boundary conditions of the two solutions also transform according to Eqs. (99b–d), i.e., the in-plane ki-

nematical and kinetic variables are changed, respectively, into the kinetic and kinematical variables asso-

ciated with the out-of-plane deformation. To find the boundary data u and v of the image laminate, one

needs to integrate the boundary forces and moments of the original laminate to obtain the data of W1 and

W2 as functions of the boundary curve length s. This may be done as follows. Let

h � ð1=2ÞðW1;y � W2;xÞ
and let s denote the arc length along the boundary. Then it is easily shown that

d=dsðW2i� W1jÞ ¼ Mnnþ ðMns þ hÞs; dh=ds ¼ Qn; ð100a; bÞ
where s and n are the unit tangent and normal vectors along the boundary, Mn and Mns are the normal and
twisting moments per unit curve length, and Qn is the resultant of snz per unit curve length. Hence W1ðsÞ and
W2ðsÞ may be obtained by integrating the data of dMns=dsþ Qn and Mn along the boundary:

Mns þ h ¼
Z

ðdMns=dsþ QnÞds; W2i� W1j ¼
Z

fMnnþ ðMns þ hÞsgds: ð101a; bÞ

Notice that dMns=dsþ Qn and Mn are precisely the kinetic boundary data commonly required in the clas-

sical plate theory. Eq. (101) implies that they are equivalent to the boundary data of the moment potentials,

which arise as naturally in the present formulation as the boundary data of in-plane displacements. Notice

also that the relationship of Eq. (99e) is expressed in terms of A�, B� and D�. In the conventional laminate

theory based on the stiffness matrices A, B and D, the isomorphism of the image laminates is not easily
discerned.

Laminates with B ¼ 0, and therefore B� ¼ 0, show no coupling of in-plane and out-of-plane responses.

They form an important class which includes all homogeneous plates as well as all laminated plates that are

symmetric with respect to the mid-plane. For such laminates, Eqs. (8), (9) and (12) yield M12ðlÞ � 0. The

function space of general solutions is decomposable into two orthogonal subspaces, each of dimension four,

one associated with the bending–twisting stiffness matrix D� ¼ KDK, and the other with the in-plane

compliance matrix A� ¼ A�1. Eq. (23) is separated into the following two sets of scalar equations, each

determining the eigensolutions belonging to one of the two orthogonal subspaces:

M11ðlÞn½0�
2 ¼ 0; M11ðlÞn½1�

2 þM 0
11ðlÞn

½0�
2 ¼ 0; ð102aÞ

M22ðlÞn½0�
4 ¼ 0; M22ðlÞn½1�

4 þM 0
22ðlÞn

½0�
4 ¼ 0: ð102bÞ

The two sets of equations characterize, respectively, the bending–twisting problem and the stretching

problem, which are now uncoupled. These two uncoupled problems, determined respectively by

M11ðlÞ ¼ f�l2;�1; lgD�fl2;�1; lgT and M22ðlÞ ¼ f�l2;�1; lgð�A�Þf�l2;�1; lgT, have essentially an
identical mathematical structure except for the reversal of the kinematical and kinetic variables.
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The isomorphism has important implications. It implies that all analytic solutions of 2-D elasticity with

the compliance matrix A�, including those that can be found in the standard references of Muskhelishvili

and Lekhnitskii, are transformed by Eq. (99) into deflection solutions of an image laminate having the

flexural stiffness D� numerically equal to A�, and subjected to boundary conditions that are complementary
to the original problem. For example, the plane-stress solution of an infinite plate subjected to the given

traction vector ftx; tyg ¼ ff1ðsÞ; f2ðsÞg along the boundary of an arbitrarily-shaped hole is transformed by

Eq. (99) into the bending/twisting solution of the image plate with the deflection data fw;y ;�w;xg ¼R
ff1; f2gds along the same hole boundary. Therefore, the class of bending solutions of symmetric aniso-

tropic laminates is coextensive with the class of plane-stress solutions of anisotropic elasticity. Through the

replacement of the variables f��x;��y ;�2�xy ; rx; ry ; rxyg of the latter problem by the variables

fMy ;Mx;�2Mxy ; jy ; jx;�jxyg, and the compliance matrix A� by the new bending stiffness D�, the plane-

stress boundary-value problem of elasticity is changed exactly into the bending problem of plates. Although
Lekhnitskii (1968) pointed out the striking similarity between the differential equations governing the

unknown functions F and w in the two problems, the exact correspondence of the variables and the

boundary conditions was not clarified. Otherwise there would not have been the need of a bending theory

of classical plates separate from the 2-D theory of anisotropic elasticity.

Appendix A. Pseudo-metrics of the eigenspaces of the various types of eigenvalues

(I) Eigenspaces associated with normal eigenvalues––multiplicity one to four

x½N1� ¼ ½d0W �; x�1
½N1� ¼ ½1=ðd0W Þ�; ðA:1a; bÞ

x½N2� � 0 d00W =2
d00W =2 d000W =6þ d00W 0=2

� �
; ðA:2aÞ

x�1
½N2� ¼ ð1=W Þ ð2=3Þð1=d00Þ0 � 2W 0=ðd00W Þ 2=d00

2=d00 0

� �
; ðA:2bÞ

x½N3� �
0 0 d000W =3
0 d000W =6 dð4ÞW =12þ d000W 0=3

d000W =3 dð4ÞW =12þ d000W 0=3 dð5ÞW =30þ dð4ÞW 0=6þ d000W 00=3

2
4

3
5; ðA:3aÞ

x�1
½N3� � ð3=W d000Þ

�W 00=W þ 2ðW 0=W Þ2 þ ðd0000=d000Þ2=8� dð5Þ=ð10d000Þ þW 0d0000=ð2W d000Þ �2W 0=W � d0000=ð2d000Þ 1

�2W 0=W � d0000=ð2d000Þ 2 0

1 0 0

2
4

3
5;

ðA:3bÞ

X ¼ x½N4� ¼ sfn½0�; n½1�; n½2�; n½3�g; fn½0�; n½1�; n½2�; n½3�gt ¼ ½Xij�; ðA:4aÞ

where all elements Xij vanish except the following

X14 ¼ X41 ¼ 3X23 ¼ 3X32 ¼ ð1=4Þdð4ÞW ;

X24 ¼ X42 ¼ ð3=2ÞX33 ¼ ð1=20Þfdð5ÞW þ 5dð4ÞW 0g;

X34 ¼ X43 ¼ ð1=60Þfdð6ÞW þ 6dð5ÞW 0 þ 15dð4ÞW 00g;

X44 ¼ ð1=140Þfdð7ÞW þ 7dð6ÞW 0 þ 21dð5ÞW 00 þ 35dð4ÞW 000g:
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Inversion of the matrix x½N4� may be facilitated by using the following expression of d, which is valid only

for a quadruple root of d ¼ 0:

d ¼ �ðA�
11D

�
11 � B�2

11Þðl � l0Þ
4ðl � �ll0Þ

4
:

Taking the derivative of d up to the seventh order, evaluating the result at l ¼ l0, substituting into Eq.

(A.4a), and then inverting the matrix, one obtains x�1
½N4� whose components X�1

ij are given by

X�1
11 ¼ ð12=W d0000Þf2W 0W 00=W 2 � W 000=ð3W Þ � 2ðW 0=W Þ3 þ 4ðW 00=W � 2W 02=W 2Þðl0 � �ll0Þ

�1

� 20ðW 0=W Þðl0 � �ll0Þ
�2 � 40ðl0 � �ll0Þ

�3g;

X�1
12 ¼ X�1

21 ¼ f2ðW 0=W Þ2 � W 00=W þ 8ðW 0=W Þðl0 � �ll0Þ
�1 þ 20ðl0 � �ll0Þ

�2g;

X�1
22 ¼ 2X�1

13 ¼ 2X�1
31 ¼ �24W 0=ðW 2d0000Þ � 96ðl0 � �ll0Þ

�2
=ðW d0000Þ;

X�1
23 ¼ X�1

32 ¼ 3X�1
14 ¼ 3X�1

41 ¼ 12=ðW d0000Þ;

X�1
24 ¼ X�1

33 ¼ X�1
42 ¼ X�1

34 ¼ X�1
43 ¼ X�1

44 ¼ 0:

ðA:4bÞ

(II) Eigenspaces associated with abnormal eigenvalues––multiplicity two to four

x½A2� ¼ sJðlÞ; JðlÞt ¼M0ðlÞ; x�1
½A2� ¼ ð2=d00ÞW0ðlÞ; ðA:5a; bÞ

x½A3� ¼
W 0 0 0
0 0 W 0d000=3
0 W 0d000=3 W 0d0000=6þ W 00d000=3

2
4

3
5; ðA:6aÞ

x�1
½A3� ¼ 3=ðW 0d000Þ

d000=3 0 0

0 �ð1=2Þd0000=d000 � W 00=W 0 1

0 1 0

2
4

3
5; ðA:6bÞ

X ¼ x½A4� ¼

W 0 0 0 0

0 0 0 W 0d0000=4
0 0 W 0d0000=6 W 00d0000=4þ W 0dð5Þ=10
0 W 0d0000=4 W 00d0000=4þ W 0dð5Þ=10 W 000d0000=4þ 3W 00dð5Þ=20þ W 0dð6Þ=20

2
664

3
775; ðA:7aÞ

x�1
½A4� ¼

1=W 0 0 0 0

0 X�1
22 X�1

23 4=ðW 0d0000Þ
0 X�1

23 6=ðW 0d0000Þ 0

0 4=ðW 0d0000Þ 0 0

2
6664

3
7775; ðA:7bÞ

where

X�1
22 ¼ 6f2W 0dð5Þ þ 5W 00d0000g2=ðW 0d0000Þ3 � 4fW 0dð6Þ þ 3W 00dð5Þ þ 5W 000d0000g=ðW 0d0000Þ2;

X�1
23 ¼ �ð6=5Þf2W 0dð5Þ þ 5W 00d0000g=ðW 0d0000Þ2:

(III) Eigenspace associated with a superabnormal eigenvalue

x½SA� ¼ sfJ; J0g; fJ; J0gt ¼ 02�2 ð1=2ÞM00ðl0Þ
ð1=2ÞM00ðl0Þ ð1=6ÞM000ðl0Þ

� �
; ðA:8aÞ
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x�1
½SA� ¼ ð12=d0000Þ �W000=3 W00

W00 02�2

� �
: ðA:8bÞ

Appendix B. Intrinsic tensor F + iG associated with the various types of eigenvalues

ðFþ iGÞ½N1� ¼ ð1=d0ÞJWJT; ðB:1Þ

ðFþ iGÞ½N2� ¼ ð2=d00ÞðJWJTÞ0 þ ð2=3Þð1=d00Þ0JWJT; ðB:2Þ

ðFþ iGÞ½N3� ¼ ð3=d000ÞðJWJTÞ00 þ ð3=2Þð1=d000Þ0ðJWJTÞ0 þ 3fðd0000Þ2=ð2d000Þ3 � dð5Þ=10ðd000Þ2gJWJT;
ðB:3Þ

ðFþ iGÞ½N4� ¼ ð4=d0000ÞðJWJTÞ000 þ ð12=5Þð1=d0000Þ0ðJWJTÞ00 þ ð12=31Þð1=d0000Þ00ðJWJTÞ0

þ ð4=227Þð1=d0000Þ000JWJT; ðB:4Þ

ðFþ iGÞ½A2� ¼ ð2=d00ÞJW0JT; ðB:5Þ

ðFþ iGÞ½A3� ¼ ð1=W 0ÞJðI� qqTÞ � ð3=2W 0Þfd0000=2ðd000Þ2 þ W 00=W 0gðW JWJTÞ00

þ 1=ðW 0d000ÞfW JWJT � dJðI� qqTÞJTg000

¼ ð3=d000ÞðJWJTÞ00 þ ð3=2Þð1=d000Þ0ðJWJTÞ0; ðB:6Þ

ðFþ iGÞ½A4� ¼ ð4=d0000ÞðJWJTÞ000 þ ð12=5Þð1=d0000Þ0ðJWJTÞ00

þ fð24=25Þðdð5ÞÞ2=ðdð4ÞÞ3 � ð4=5Þdð6Þ=ðdð4ÞÞ2gðJWJTÞ0

¼ ð4=d0000ÞðJWJTÞ000 þ ð12=5Þð1=d0000Þ0ðJWJTÞ00 þ ð12=31Þð1=d0000Þ00ðJWJTÞ0; ðB:7Þ

ðFþ iGÞ½SA� ¼ ð4=d0000Þð�JW000JT þ 3J0W00JT þ 3JW00J0T Þ

¼ ð4=d0000ÞðJWJTÞ000 þ ð12=5Þð1=d0000Þ0ðJWJTÞ00: ðB:8Þ

Appendix C. Eigenvectors, general solutions and intrinsic tensors of eleven types of anisotropic laminates

The matrices x and Fþ iG that occur in the following expressions are given, respectively, in Appendices

A and B for every type of eigenvalue.

(A) Non-degenerate laminates (four independent zeroth-order eigensolutions)

[ND-1-1-1-1]––Four distinct eigenvalues li.

Zþ ¼ fJWqðl1Þ; JWqðl2Þ; JWqðl3Þ; JWqðl4Þg; ðC:1aÞ

v ¼ Re
X

16 k6 4

fkðx
"

þ lkyÞJWqðlkÞ
#
; ðC:1bÞ

X ¼ hx½N1�ðl1Þ;x½N1�ðl2Þ;x½N1�ðl3Þ;x½N1�ðl4Þi; ðC:1cÞ
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G ¼ iII� 2i
X

16 k6 4

JðlkÞWðlkÞJðlkÞ
T
=d0ðlkÞ: ðC:1dÞ

[ND-1-1-2A]––Two simple eigenvalues l1 and l2 and one double abnormal eigenvalue l3.

Zþ ¼ JWqðl1Þ; JWqðl2Þ; Jðl3Þf g; ðC:2aÞ

v ¼ Re
X

16 k6 2

fkðx
"

þ lkyÞJWqðlkÞ þ Jðl3Þ f3ðxf þ l3yÞ; f4ðxþ l3yÞg
T

#
; ðC:2bÞ

X ¼ hx½N1�ðl1Þ;x½N1�ðl2Þ;M0ðl3Þi; ðC:2cÞ

G ¼ iII� 2iðFþ iGÞ½N1�ðl1Þ � 2iðFþ iGÞ½N1�ðl2Þ � 2iðFþ iGÞ½A2�ðl3Þ: ðC:2dÞ

Notice that f3 and f4 in Eq. (C.2b) are independent functions of the same argument.

[ND-2A-2A]––Two double abnormal eigenvalues l1 and l2.

Zþ ¼ fJðl1Þ;Jðl2Þg; ðC:3aÞ

v ¼ Re Jðl1Þff1ðx
h

þ l1yÞ; f2ðxþ l1yÞg
T þ Jðl2Þff3ðxþ l2yÞ; f4ðxþ l2yÞg

T
i
; ðC:3bÞ

X ¼ hM0ðl1Þ;M0ðl2Þi; ðC:3cÞ

G ¼ iII� 2iðFþ iGÞ½A2�ðl1Þ � 2iðFþ iGÞ½A2�ðl2Þ: ðC:3dÞ

(B) Degenerate laminates (require one first-order eigensolution)

[D-1-1-2]––Two simple eigenvalues l1 and l2 and one double normal eigenvalue l3.

Zþ ¼ JWqðl1Þ; JWqðl2Þ; JWqðl3Þ; ðJWqÞ0ðl3Þ
n o

; ðC:4aÞ

v ¼ Re
X

16 k6 3

fkðx
"

þ lkyÞJWqðlkÞ þ f4ðxf þ lyÞJWqg0ðl3Þ
#
; ðC:4bÞ

X ¼ hx½N1�ðl1Þ;x½N1�ðl2Þ;x½N2�ðl3Þi; ðC:4cÞ

G ¼ iII� 2iðFþ iGÞ½N1�ðl1Þ � 2iðFþ iGÞ½N1�ðl2Þ � 2iðFþ iGÞ½N2�ðl3Þ: ðC:4dÞ

[D-2A-2]––One double normal eigenvalue l1 and one double abnormal eigenvalue l2.

Z1 ¼ JWqðl1Þ; ðJWqÞ0ðl1Þ; Jðl2Þ
n o

; ðC:5aÞ

v ¼ Re f1ðx
h

þ l1yÞJWqðl1Þ þ ff2ðxþ lyÞJWqg0ðl1Þ þ Jðl2Þff3ðxþ l2yÞ; f4ðxþ l2yÞg
T
i
; ðC:5bÞ

X ¼ hx½N2�ðl1Þ;M0ðl2Þi; ðC:5cÞ

G ¼ iII� 2iðFþ iGÞ½N2�ðl1Þ � 2iðFþ iGÞ½A2�ðl2Þ: ðC:5dÞ

[D-1-3A]––One simple eigenvalue l1 and one triple abnormal eigenvalue l2.

Zþ ¼ JWqðl1Þ; n½0�ðl2Þ; ðJWq̂qÞ0ðl2Þ; ðJWq̂qÞ00ðl2Þ
n o

; ðC:6aÞ
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v ¼ Re½f1ðxþ l1yÞJWqðl1Þ þ f2ðxþ l2yÞn½0�ðl2Þ þ ff3ðxþ lyÞJWq̂qg0ðl2Þ
þ ff4ðxþ lyÞJWq̂qg00ðl2Þ�; ðC:6bÞ

X ¼ hx½N1�ðl1Þ;x½A3�ðl2Þi; ðC:6cÞ

G ¼ iII� 2iðFþ iGÞ½N1�ðl1Þ � 2iðFþ iGÞ½A3�ðl2Þ: ðC:6dÞ

(C) Extra-degenerate laminates (require two higher-order eigensolutions)

[ED-1-3]––One simple eigenvalue l1 and one triple normal eigenvalue l2.

Zþ ¼ JWqðl1Þ; JWqðl2Þ; ðJWqÞ0ðl2Þ; ðJWqÞ00ðl2Þ
n o

; ðC:7aÞ

v ¼ Re½f1ðxþ l1yÞJWqðl1Þ þ f2ðxþ l2yÞJWqðl2Þ þ ff3ðxþ lyÞJWqg0ðl2Þ
þ ff4ðxþ lyÞJWqg00ðl2Þ�; ðC:7bÞ

X ¼ hx½N1�ðl1Þ;x½N3�ðl2Þi; ðC:7cÞ

G ¼ iII� 2iðFþ iGÞ½N1�ðl1Þ � 2iðFþ iGÞ½N3�ðl2Þ: ðC:7dÞ

[ED-2-2]––Two normal double eigenvalues l1 and l2.

Zþ ¼ JWqðl1Þ; ðJWqÞ0ðl1Þ; JWqðl2Þ; ðJWqÞ0ðl2Þ
n o

; ðC:8aÞ

v ¼ Re½f1ðxþ l1yÞJWqðl1Þ þ ff2ðxþ lyÞJWqg0ðl1Þ þ f3ðxþ l2yÞJWqðl2Þ
þ ff4ðxþ lyÞJWqg0ðl2Þ�; ðC:8bÞ

X ¼ hx½N2�ðl1Þ;x½N2�ðl2Þi; ðC:8cÞ

G ¼ iII� 2iðFþ iGÞ½N2�ðl1Þ � 2iðFþ iGÞ½N2�ðl2Þ: ðC:8dÞ

[ED-4A]––One quadruple abnormal eigenvalue l0 which is not superabnormal.

Zþ ¼ fn½0�; n½1�; n½2�; n½3�g; v ¼ Re½f1n½0� þ f2n
½1� þ ðf3JWq̂qÞ00 þ ðf4JWq̂qÞ000�; ðC:9a; bÞ

X ¼ x½A4�; G ¼ iII� 2iðFþ iGÞ½A4�ðl0Þ; ðC:9c; dÞ

where n½0�; n½1�; n½2� and n½3� are given by Eqs. (55a–d).

[ED-4AA]––One superabnormal eigenvalue l0.

Zþ ¼ fJðl0Þ; J0ðl0Þg; v ¼ Re½Jðl0Þff1; f2g
T þ J0ðl0Þff3; f4g

Tg�; ðC:10a; bÞ

X ¼ x½SA�; G ¼ iII� 2iðFþ iGÞ½SA�: ðC:10c; dÞ

(D) Ultra-degenerate laminates (require three generalized eigensolutions)

[UD-4]––One normal quadruple eigenvalue.

Zþ ¼ fJWq; ðJ0Wþ JW0Þq; ðJ00Wþ 2J0W0 þ JW00Þq; ðJ000Wþ 3J00W0 þ 3J 0W00 þ JW000Þqg; ðC:11aÞ

v ¼ Re½f1JWq þ ðf2JWqÞ0 þ ðf3JWqÞ00 þ ðf4JWqÞ000�; ðC:11bÞ

X ¼ x½N4�; G ¼ iII� 2iðFþ iGÞ½N4�: ðC:11c; dÞ
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The following equation gives a concise way to express the general solutions of various types of laminates in

terms of the eigenvectors

v ¼ Re½ZþDf�; ðC:12Þ

where f denotes the four-dimensional column vector formed by four arbitrary analytic functions of xþ ly
and D is the identity matrix if the laminate is nondegenerate. For degenerate laminates, one has

D ¼

1 0 0 0

0 1 0 0

0 0 1 d=dl
0 0 0 1

2
664

3
775: ðC:13Þ

The D-operator of extra-degenerate laminates is given by Eq. (C.14a) below, except when the set

fl1; l2; l3; l4g contains two double normal eigenvalues (Type 2A) or one superabnormal eigenvalue (Type

4AA). In those exceptional cases D is given by Eq. (C.14b):

D ¼

1 0 0 0

0 1 d=dl d2=dl2

0 0 1 2d=dl
0 0 0 1

2
664

3
775 D ¼

1 d=dl 0 0

0 1 0 0
0 0 1 d=dl
0 0 0 1

2
664

3
775: ðC:14a; bÞ

Finally, for ultra-degenerate laminates one has

D ¼
1 d=dl d2=dl2 d3=dl3

0 1 2d=dl 3d2=dl2

0 0 1 3d=dl
0 0 0 1

2
664

3
775: ðC:15Þ

After performing differentiation, the parameter l in each analytic function fkðxþ lyÞ and its derivatives

must be replaced by the particular (simple or multiple) eigenvalue associated with the kth eigenvector in Zþ.
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